Skip to main content

Advertisement

Log in

Type 1 diabetes mellitus induces structural changes and molecular remodelling in the rat kidney

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

There is much evidence that diabetes mellitus (DM)-induced hyperglycemia (HG) is responsible for kidney failure or nephropathy leading to cardiovascular complications. Cellular and molecular mechanism(s) whereby DM can damage the kidney is still not fully understood. This study investigated the effect of streptozotocin (STZ)-induced diabetes (T1DM) on the structure and associated molecular alterations of the isolated rat left kidney following 2 and 4 months of the disorder compared to the respective age-matched controls. The results revealed hypertrophy and general disorganized architecture of the kidney characterized by expansion in glomerular borders, tubular atrophy and increased vacuolization of renal tubular epithelial cells in the diabetic groups compared to controls. Electron microscopic analysis revealed ultrastructural alterations in the left kidney highlighted by an increase in glomerular basement membrane width. In addition, increased caspase-3 immunoreactivity was observed in the kidney of T1DM animals compared to age-matched controls. These structural changes were associated with elevated extracellular matrix (ECM) deposition and consequently, altered gene expression profile of ECM key components, together with elevated levels of key mediators (MMP9, integrin 5α, TIMP4, CTGF, vimentin) and reduced expressions of Cx43 and MMP2 of the ECM. Marked hypertrophy of the kidney was highlighted by increased atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression. These changes also correlated with increased TGFβ1 activity, gene expression in the left kidney and elevated active TGFβ1 in the plasma of T1DM rats compared to control. The results clearly demonstrated that TIDM could elicit severe structural changes and alteration in biochemical markers (remodelling) in the kidney leading to diabetic nephropathy (DN).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gallagher H, Suckling EJ (2016) Diabetic nephropathy: where are we on the journey from pathophysiology to treatment? Diabetes Obesity Metabolism 18:641–647

    Article  CAS  Google Scholar 

  2. Decleves AE, Sharma K (2010) New pharmacological treatments for improving renal outcomes in diabetes. Nat Rev Nephrol 6:371–380

    Article  CAS  PubMed  Google Scholar 

  3. Kato M, Yuan H, Xu ZG, Lanting L, Li SL, Wang M, Hu MC, Reddy MA, Natarajan R (2006) Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J Am Soc Nephrol 17:3325–3335

    Article  CAS  PubMed  Google Scholar 

  4. Kato M, Park JT, Natarajan R (2012) MicroRNAs and the glomerulus. Exp Cell Res 318:993–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 104:3432–3437

    Article  CAS  PubMed  Google Scholar 

  6. Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16(Suppl 1):S30-3., S30-S33

    PubMed  Google Scholar 

  7. Mishra R, Emancipator SN, Kern T, Simonson MS (2005) High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int 67:82–93

    Article  CAS  PubMed  Google Scholar 

  8. Ziyadeh FN (2004) Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol 15(Suppl 1):S55-7., S55-S57

    PubMed  Google Scholar 

  9. Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG, Lanting LL, Kato M, Natarajan R (2013) Transforming growth factor-beta-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62:3151–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D’Souza A, Howarth FC, Yanni J, Dobryznski H, Boyett MR, Adeghate E, Bidasee KR, Singh J (2011) Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 96:875–888

    Article  PubMed  Google Scholar 

  11. D’Souza A, Howarth FC, Yanni J, Dobrzynski H, Boyett MR, Adeghate E, Bidasee KR, Singh J (2014) Chronic effects of mild hyperglycaemia on left ventricle transcriptional profile and structural remodelling in the spontaneously type 2 diabetic Goto-Kakizaki rat. Heart Fail Rev 19:65–74

    Article  PubMed  Google Scholar 

  12. Yanni J, Tellez JO, Sutyagin PV, Boyett MR, Dobrzynski H (2010) Structural remodelling of the sinoatrial node in obese old rats. J Mol Cell Cardiol 48:653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skern R, Frost P, Nilsen F (2005) Relative transcript quantification by quantitative PCR: roughly right or precisely wrong? BMC Mol Biol 6:10: 1–3

    Article  Google Scholar 

  14. Lowry OH, Rosebrough NJ, Farr AL, Randaal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  15. Border WA, Yamamoto T, Noble NA (1996) Transforming growth factor beta in diabetic nephropathy. Diabetes Metab Rev 12(4):309–339

    Article  CAS  PubMed  Google Scholar 

  16. Wolf G (2004) New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 34(12):785–796

    Article  CAS  PubMed  Google Scholar 

  17. Caramori ML, Fioretto P, Mauer M (2006) Enhancing the predictive value of urinary albumin for diabetic nephropathy. J Am Soc Nephrol 17:339–352

    Article  CAS  PubMed  Google Scholar 

  18. Wolf G, Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56:393–405

    Article  CAS  PubMed  Google Scholar 

  19. Mahimainathan L, Das F, Venkatesan B, Choudhury GG (2006) Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 55:2115–2125

    Article  CAS  PubMed  Google Scholar 

  20. Shin SJ, Lee YJ, Tan MS, Hsieh TJ, Tsai JH (1997) Increased atrial natriuretic peptide mRNA expression in the kidney of diabetic rats. Kidney Int 51:1100–1105

    Article  CAS  PubMed  Google Scholar 

  21. Drummond K, Mauer M (2002) The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 51(5):1580–1587

    Article  CAS  PubMed  Google Scholar 

  22. White KE, Bilous RW (2000) Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease. J Am Soc Nephrol 11:1667–1673

    CAS  PubMed  Google Scholar 

  23. Tervaert TW, Mooyart AL, Amann K, Cohen AH (2010) Pathologic classification of diabetic nephropathy. JASN 2(4): 556–563

    Article  Google Scholar 

  24. Toyoda M, Najafian B, Kim Y, Caramouri ML, Mauer M (2007) Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 56(8):2155–2160

    Article  CAS  PubMed  Google Scholar 

  25. Siddiqi FA, Advani A (2013) Endothelial-podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes. Diabetes 62(11):3647–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verzola D, Gandolfo MT, Ferrario F, Rastaldi MP, Villaggio B, Gianiorio F, Giannoni M, Rimoldi L, Lauria F, Miji M, Deferrari G, Garibotto G (2007) Apoptosis in the kidneys of patients with type II diabetic nephropathy. Kidney Int 72:1262–1272

    Article  CAS  PubMed  Google Scholar 

  27. Dalla Vestra M, Saller A, Mauer M, Floretto P (2001) Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J Nephrol 14(Suppl 4):S51-S57

    Google Scholar 

  28. Kumar D, Zimpelmann J, Robertson S, Burns KD (2004) Tubular and interstitial cell apoptosis in the streptozotocin-diabetic rat kidney. Nephron Exp Nephrol 96:e77-e88

    Article  Google Scholar 

  29. Sanz AB, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A (2008) Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol 19:1634–1642

    Article  CAS  PubMed  Google Scholar 

  30. Maric C, Sandberg K, Hinojosa-Laborde C (2004) Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-estradiol in the aging Dahl salt sensitive rat. J Am Soc Nephrol 15:1546–1556

    Article  CAS  PubMed  Google Scholar 

  31. Benigni A, Zoja C, Campana M, Corna D, Sangalli F, Rottoli D, Gagliardini E, Conti S, Ledbetter S, Remuzzi G (2006) Beneficial effect of TGFbeta antagonism in treating diabetic nephropathy depends on when treatment is started. Nephron Exp Nephrol 104:e158-e168

    Article  Google Scholar 

  32. Mankhey RW, Bhatti F, Maric C (2005) 17beta-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol Renal Physiol 288:F399-F405

    Article  Google Scholar 

  33. Twigg SM, Cao Z, McLennan SV, Burns WC, Brammar G, Forbes JM, Cooper ME (2002) Renal connective tissue growth factor induction in experimental diabetes is prevented by aminoguanidine. Endocrinology 143:4907–4915

    Article  CAS  PubMed  Google Scholar 

  34. Wahab NA, Yevdokimova N, Weston BS, Roberts T, Li XJ, Brinkman H, Mason RM (2001) Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J 359:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Umezono T, Toyoda M, Kato M, Miyauchi M, Kimura M, Maruyama M, Honma M, Yagame M, Suzuki D (2006) Glomerular expression of CTGF, TGF-beta 1 and type IV collagen in diabetic nephropathy. J Nephrol 19:751–757

    CAS  PubMed  Google Scholar 

  36. Riser BL, deNichilo M, Cortes P, Baker C, Grondin JM, Yee J, Narins RG (2000) Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol 11:25–38

    CAS  PubMed  Google Scholar 

  37. Park SK, Kim J, Seomun Y, Choi J, Kim DH, Han IO, Lee EH, Chung SK, Joo CK (2001) Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem Biophys Res Commun 284:966–971

    Article  CAS  PubMed  Google Scholar 

  38. Blom IE, van Dijk AJ, Wieten L, Duran K, Ito Y, Kleij L, deNichilo M, Rabelink TJ, Weening JJ, Aten J, Goldschmeding R (2001) In vitro evidence for differential involvement of CTGF, TGFbeta, and PDGF-BB in mesangial response to injury. Nephrol Dial Transplant 16:1139–1148

    Article  CAS  PubMed  Google Scholar 

  39. Yokoi H, Mukoyama M, Sugawara A, Mori K, Nagae T, Makino H, Suganami T, Yahata K, Fujinaga Y, Tanaka I, Nakao K (2002) Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis. Am J Physiol Renal Physiol 282:F933-F942

    Article  Google Scholar 

  40. McLennan SV, Kelly DJ, Cox AJ, Cao Z, Lyons JG, Yue DK, Gilbert RE (2002) Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia 45:268–275

    Article  CAS  PubMed  Google Scholar 

  41. Metcalfe PD, Meldrum KK (2006) Sex differences and the role of sex steroids in renal injury. J Urol 176:15–21

    Article  CAS  PubMed  Google Scholar 

  42. Li SY, Huang PH, Yang AH, Tarng DC, Yang WC, Lin CC, Chen JW, Schmid-Schonbein G, Lin SJ (2014) Matrix metalloproteinase-9 deficiency attenuates diabetic nephropathy by modulation of podocyte functions and dedifferentiation. Kidney Int 86(2):358–369. https://doi.org/10.1038/ki.2014.67

    Article  CAS  PubMed  Google Scholar 

  43. van der Zijl NJ, Hanemaaijer R, Tushuizen ME, Schindhelm RK, Boerop J, Rustemeijer C, Bilo HJ, Verheijen JH, Diamant M (2010) Urinary matrix metalloproteinase-8 and -9 activities in type 2 diabetic subjects: a marker of incipient diabetic nephropathy? Clin Biochem 43:635–639

    Article  PubMed  Google Scholar 

  44. Rysz J, Banach M, Stolarek RA, Pasnik J, Cialkowska-Rysz A, Koktysz R, Piechota M, Baj Z (2007) Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J Nephrol 20:444–452

    CAS  PubMed  Google Scholar 

  45. Del PD, Anglani F, Forino M, Ceol M, Fioretto P, Nosadini R, Baggio B, Gambaro G (1997) Down-regulation of glomerular matrix metalloproteinase-2 gene in human NIDDM. Diabetologia 40:1449–1454

    Article  Google Scholar 

  46. Romanic AM, Burns-Kurtis CL, Ao Z, Arleth AJ, Ohlstein EH (2001) Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients. Am J Physiol Renal Physiol 281:F309-F317

    Article  Google Scholar 

  47. Skiles JW, Gonnella NC, Jeng AY (2001) The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem 8:425–474

    Article  CAS  PubMed  Google Scholar 

  48. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sawai K, Mukoyama M, Mori K, Yokoi H, Koshikawa M, Yoshioka T, Takeda R, Sugawara A, Kuwahara T, Saleem MA, Ogawa O, Nakao K (2006) Redistribution of connexin43 expression in glomerular podocytes predicts poor renal prognosis in patients with type 2 diabetes and overt nephropathy. Nephrol Dial Transplant 21:2472–2477

    Article  CAS  PubMed  Google Scholar 

  50. Wright JA, Richards J, Becker DL (2012) Connexins and diabetes. Cardiol Res Prac. https://doi.org/10.1155/2012/496904

    Article  Google Scholar 

  51. Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062

    Article  CAS  PubMed  Google Scholar 

  52. Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68:3033–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael M. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.M., Howarth, F.C., Adeghate, E. et al. Type 1 diabetes mellitus induces structural changes and molecular remodelling in the rat kidney. Mol Cell Biochem 449, 9–25 (2018). https://doi.org/10.1007/s11010-018-3338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3338-4

Keywords

Navigation