Skip to main content

Advertisement

Log in

Duration-dependent effects of nicotine exposure on growth and AKT activation in human kidney epithelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Exposure to nicotine is known to cause adverse effects in many target organs including kidney. Epidemiological studies suggest that nicotine-induced kidney diseases are prevalent worldwide. However, the impact of duration of exposure on the nicotine-induced adverse effects in normal kidney cells and the underlying molecular mechanism is still unclear. Hence, the objective of this study was to evaluate both acute and long-term effects of nicotine in normal human kidney epithelial cells (HK-2). Cells were treated with 1 and 10 µM nicotine for acute and long-term duration. The result of cell viability showed that the acute exposure to 1 µM nicotine has no significant effect on growth. However, the 10 µM nicotine caused significant decrease in the growth of HK-2 cells. The long-term exposure resulted in significantly increased cell growth in both 1 and 10 µM nicotine-treated groups. Analysis of cell cycle and expression of marker genes related to proliferation and apoptosis further confirmed the effects of nicotine. Additionally, the analysis of growth signaling pathway revealed the decreased level of pAKT in cells with acute exposure whereas the increased level of pAKT in long-term nicotine-exposed cells. This suggests that nicotine, through modulating the AKT pathway, controls the duration-dependent effects on the growth of HK-2 cells. In summary, this is the first report showing long-duration exposure to nicotine causes increased proliferation of human kidney epithelial cells through activation of AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanner T, Grimsrud TK (2015) Nicotine: carcinogenicity and effects on response to cancer treatment—a review. Front Oncol 5:196. https://doi.org/10.3389/fonc.2015.00196

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benowitz NL, Jacob P, 3rd (1984) Daily intake of nicotine during cigarette smoking. Clin Pharmacol Ther 35:499–504

    Article  CAS  PubMed  Google Scholar 

  3. Benowitz NL, Hukkanen J, Jacob P, 3rd (2009) Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. https://doi.org/10.1007/978-3-540-69248-5_2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benowitz NL, Lake T, Keller KH, Lee BL (1987) Prolonged absorption with development of tolerance to toxic effects after cutaneous exposure to nicotine. Clin Pharmacol Ther 42:119–120

    Article  CAS  PubMed  Google Scholar 

  5. Bao Z, He XY, Ding X, Prabhu S, Hong JY (2005) Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab Dispos 33:258–261. https://doi.org/10.1124/dmd.104.002105

    Article  CAS  PubMed  Google Scholar 

  6. Ginzkey C, Steussloff G, Koehler C, Hackenberg S, Richter E, Hagen R, Kleinsasser NH (2014) Nicotine causes genotoxic damage but is not metabolized during long-term exposure of human nasal miniorgan cultures. Toxicol Lett 229:303–310. https://doi.org/10.1016/j.toxlet.2014.06.842

    Article  CAS  PubMed  Google Scholar 

  7. Hukkanen J, Jacob P, 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115. https://doi.org/10.1124/pr.57.1.3

    Article  CAS  PubMed  Google Scholar 

  8. Grando SA (2014) Connections of nicotine to cancer. Nat Rev Cancer 14:419–429. https://doi.org/10.1038/nrc3725

    Article  CAS  PubMed  Google Scholar 

  9. Cumberbatch MG, Rota M, Catto JW, La Vecchia C (2016) The role of tobacco smoke in bladder and kidney carcinogenesis: a comparison of exposures and meta-analysis of incidence and mortality risks. Eur Urol 70:458–466. https://doi.org/10.1016/j.eururo.2015.06.042

    Article  CAS  PubMed  Google Scholar 

  10. Orth SR, Hallan SI (2008) Smoking: a risk factor for progression of chronic kidney disease and for cardiovascular morbidity and mortality in renal patients—absence of evidence or evidence of absence? Clin J Am Soc Nephrol 3:226–236. https://doi.org/10.2215/CJN.03740907

    Article  PubMed  Google Scholar 

  11. Hunt JD, van der Hel OL, McMillan GP, Boffetta P, Brennan P (2005) Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. Int J Cancer 114:101–108. https://doi.org/10.1002/ijc.20618

    Article  CAS  PubMed  Google Scholar 

  12. Theis RP, Dolwick Grieb SM, Burr D, Siddiqui T, Asal NR (2008) Smoking, environmental tobacco smoke, and risk of renal cell cancer: a population-based case-control study. BMC Cancer 8:387. https://doi.org/10.1186/1471-2407-8-387

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cote ML, Colt JS, Schwartz KL, Wacholder S, Ruterbusch JJ, Davis F, Purdue M, Graubard BI, Chow WH (2012) Cigarette smoking and renal cell carcinoma risk among black and white Americans: effect modification by hypertension and obesity. Cancer Epidemiol Biomarkers Prev 21:770–779. https://doi.org/10.1158/1055-9965.EPI-11-1109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jaimes EA, Tian RX, Joshi MS, Raij L (2009) Nicotine augments glomerular injury in a rat model of acute nephritis. Am J Nephrol 29:319–326. https://doi.org/10.1159/000163593

    Article  CAS  PubMed  Google Scholar 

  15. Chow WH, Dong LM, Devesa SS (2010) Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7:245–257. https://doi.org/10.1038/nrurol.2010.46

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clague J, Shao L, Lin J, Chang S, Zhu Y, Wang W, Wood CG, Wu X (2009) Sensitivity to NNKOAc is associated with renal cancer risk. Carcinogenesis 30:706–710. https://doi.org/10.1093/carcin/bgp045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kazancioglu R (2013) Risk factors for chronic kidney disease: an update. Kidney Int Suppl (2011) 3:368–371. https://doi.org/10.1038/kisup.2013.79

    Article  Google Scholar 

  18. Jaimes EA, Tian RX, Raij L (2007) Nicotine: the link between cigarette smoking and the progression of renal injury? Am J Physiol Heart Circ Physiol 292:H76–H82. https://doi.org/10.1152/ajpheart.00693.2006

    Article  CAS  PubMed  Google Scholar 

  19. Jain G, Jaimes EA (2013) Nicotine signaling and progression of chronic kidney disease in smokers. Biochem Pharmacol 86:1215–1223. https://doi.org/10.1016/j.bcp.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  20. Yacoub R, Habib H, Lahdo A, Al Ali R, Varjabedian L, Atalla G, Kassis Akl N, Aldakheel S, Alahdab S, Albitar S (2010) Association between smoking and chronic kidney disease: a case control study. BMC Public Health 10:731. https://doi.org/10.1186/1471-2458-10-731

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pinto-Sietsma SJ, Mulder J, Janssen WM, Hillege HL, de Zeeuw D, de Jong PE (2000) Smoking is related to albuminuria and abnormal renal function in nondiabetic persons. Ann Intern Med 133:585–591

    Article  CAS  PubMed  Google Scholar 

  22. Cucina A, Sapienza P, Corvino V, Borrelli V, Mariani V, Randone B, D’Angelo LS, Cavallaro A (2000) Nicotine-induced smooth muscle cell proliferation is mediated through bFGF and TGF-beta 1. Surgery 127:316–322

    Article  CAS  PubMed  Google Scholar 

  23. Cucina A, Sapienza P, Corvino V, Borrelli V, Randone B, Santoro-D’Angelo L, Cavallaro A (2000) Nicotine induces platelet-derived growth factor release and cytoskeletal alteration in aortic smooth muscle cells. Surgery 127:72–78. https://doi.org/10.1067/msy.2000.102422

    Article  CAS  PubMed  Google Scholar 

  24. Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7:833–839. https://doi.org/10.1038/89961

    Article  CAS  PubMed  Google Scholar 

  25. Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E, Chellappan S (2006) Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest 116:2208–2217. https://doi.org/10.1172/JCI28164

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, Banerjee S, Carless M, Kim E, Coppola D, Haura E, Chellappan S (2009) Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer 124:36–45. https://doi.org/10.1002/ijc.23894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng Y, Ritzenthaler JD, Roman J, Han S (2007) Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. Am J Respir Cell Mol Biol 37:681–690. https://doi.org/10.1165/rcmb.2007-0051OC

    Article  CAS  PubMed  Google Scholar 

  28. Guo J, Chu M, Abbeyquaye T, Chen CY (2005) Persistent nicotine treatment potentiates amplification of the dihydrofolate reductase gene in rat lung epithelial cells as a consequence of Ras activation. J Biol Chem 280:30422–30431. https://doi.org/10.1074/jbc.M504688200

    Article  CAS  PubMed  Google Scholar 

  29. Lee CH, Huang CS, Chen CS, Tu SH, Wang YJ, Chang YJ, Tam KW, Wei PL, Cheng TC, Chu JS, Chen LC, Wu CH, Ho YS (2010) Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J Natl Cancer Inst 102:1322–1335. https://doi.org/10.1093/jnci/djq300

    Article  CAS  PubMed  Google Scholar 

  30. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH (2007) Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicol Sci 97:279–287. https://doi.org/10.1093/toxsci/kfm060

    Article  CAS  PubMed  Google Scholar 

  31. Shin VY, Wu WK, Ye YN, So WH, Koo MW, Liu ES, Luo JC, Cho CH (2004) Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis 25:2487–2495. https://doi.org/10.1093/carcin/bgh266

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Garcia E, Irigoyen M, Gonzalez-Moreno O, Corrales L, Teijeira A, Salvo E, Rouzaut A (2010) Repetitive nicotine exposure leads to a more malignant and metastasis-prone phenotype of SCLC: a molecular insight into the importance of quitting smoking during treatment. Toxicol Sci 116:467–476. https://doi.org/10.1093/toxsci/kfq138

    Article  CAS  PubMed  Google Scholar 

  33. Gunness P, Aleksa K, Kosuge K, Ito S, Koren G (2010) Comparison of the novel HK-2 human renal proximal tubular cell line with the standard LLC-PK1 cell line in studying drug-induced nephrotoxicity. Can J Physiol Pharmacol 88:448–455. https://doi.org/10.1139/y10-023

    Article  CAS  PubMed  Google Scholar 

  34. Kim CS, Choi JS, Joo SY, Bae EH, Ma SK, Lee J, Kim SW (2016) Nicotine-induced apoptosis in human renal proximal tubular epithelial cells. PLoS ONE 11:e0152591. https://doi.org/10.1371/journal.pone.0152591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  36. Hanaki T, Horikoshi Y, Nakaso K, Nakasone M, Kitagawa Y, Amisaki M, Arai Y, Tokuyasu N, Sakamoto T, Honjo S, Saito H, Ikeguchi M, Yamashita K, Ohno S, Matsura T (2016) Nicotine enhances the malignant potential of human pancreatic cancer cells via activation of atypical protein kinase C. Biochim Biophys Acta 1860:2404–2415. https://doi.org/10.1016/j.bbagen.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  37. Yuge K, Kikuchi E, Hagiwara M, Yasumizu Y, Tanaka N, Kosaka T, Miyajima A, Oya M (2015) Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/mTOR pathway in bladder cancer. Mol Cancer Ther 14:2112–2120. https://doi.org/10.1158/1535-7163.MCT-15-0140

    Article  CAS  PubMed  Google Scholar 

  38. Chew ST, Ng RR, Liu W, Chow KY, Ti LK (2017) Acute kidney injury increases the risk of end-stage renal disease after cardiac surgery in an Asian population: a prospective cohort study. BMC Nephrol 18:60. https://doi.org/10.1186/s12882-017-0476-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA, Collins AJ (2009) Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 20:223–228. https://doi.org/10.1681/ASN.2007080837

    Article  PubMed  PubMed Central  Google Scholar 

  40. Price PM, Safirstein RL, Megyesi J (2009) The cell cycle and acute kidney injury. Kidney Int 76:604–613. https://doi.org/10.1038/ki.2009.224

    Article  PubMed  PubMed Central  Google Scholar 

  41. Arany I, Clark J, Reed DK, Juncos LA (2013) Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc. Nephrol Dial Transplant 28:1417–1425. https://doi.org/10.1093/ndt/gfs596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arany I, Reed DK, Grifoni SC, Chandrashekar K, Booz GW, Juncos LA (2012) A novel U-STAT3-dependent mechanism mediates the deleterious effects of chronic nicotine exposure on renal injury. Am J Physiol Renal Physiol 302:F722–F729. https://doi.org/10.1152/ajprenal.00338.2011

    Article  CAS  PubMed  Google Scholar 

  43. Geng H, Zhao L, Liang Z, Zhang Z, Xie D, Bi L, Wang Y, Zhang T, Cheng L, Yu D, Zhong C (2017) Cigarette smoke extract-induced proliferation of normal human urothelial cells via the MAPK/AP-1 pathway. Oncol Lett 13:469–475. https://doi.org/10.3892/ol.2016.5407

    Article  CAS  PubMed  Google Scholar 

  44. Hong W, Peng G, Hao B, Liao B, Zhao Z, Zhou Y, Peng F, Ye X, Huang L, Zheng M, Pu J, Liang C, Yi E, Peng H, Li B, Ran P (2017) Nicotine-induced airway smooth muscle cell proliferation involves TRPC6-dependent calcium influx via alpha7 nAChR. Cell Physiol Biochem 43:986–1002. https://doi.org/10.1159/000481651

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Pu G, Chen C, Yang L (2015) Inhibition of FHL1 inhibits cigarette smoke extract-induced proliferation in pulmonary arterial smooth muscle cells. Mol Med Rep 12:3801–3808. https://doi.org/10.3892/mmr.2015.3787

    Article  CAS  PubMed  Google Scholar 

  46. Jensen K, Afroze S, Ueno Y, Rahal K, Frenzel A, Sterling M, Guerrier M, Nizamutdinov D, Dostal DE, Meng F, Glaser SS (2013) Chronic nicotine exposure stimulates biliary growth and fibrosis in normal rats. Dig Liver Dis 45:754–761. https://doi.org/10.1016/j.dld.2013.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Wadei MH, Al-Wadei HA, Schuller HM (2012) Effects of chronic nicotine on the autocrine regulation of pancreatic cancer cells and pancreatic duct epithelial cells by stimulatory and inhibitory neurotransmitters. Carcinogenesis 33:1745–1753. https://doi.org/10.1093/carcin/bgs229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Catassi A, Servent D, Paleari L, Cesario A, Russo P (2008) Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: implications on lung carcinogenesis. Mutat Res 659:221–231. https://doi.org/10.1016/j.mrrev.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  49. Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, Sayyah J, Dennis PA (2005) Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis 26:1182–1195. https://doi.org/10.1093/carcin/bgi072

    Article  CAS  PubMed  Google Scholar 

  50. Zhu BQ, Heeschen C, Sievers RE, Karliner JS, Parmley WW, Glantz SA, Cooke JP (2003) Second hand smoke stimulates tumor angiogenesis and growth. Cancer Cell 4:191–196

    Article  CAS  PubMed  Google Scholar 

  51. Chen RJ, Ho YS, Guo HR, Wang YJ (2008) Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci 104:283–293. https://doi.org/10.1093/toxsci/kfn086

    Article  CAS  PubMed  Google Scholar 

  52. Calderon LE, Liu S, Arnold N, Breakall B, Rollins J, Ndinguri M (2015) Bromoenol lactone attenuates nicotine-induced breast cancer cell proliferation and migration. PLoS ONE 10:e0143277. https://doi.org/10.1371/journal.pone.0143277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pucci B, Kasten M, Giordano A (2000) Cell cycle and apoptosis. Neoplasia 2:291–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mosadegh M, Hasanzadeh S, Razi M (2017) Nicotine-induced damages in testicular tissue of rats; evidences for bcl-2, p53 and caspase-3 expression. Iran J Basic Med Sci 20:199–208. https://doi.org/10.22038/ijbms.2017.8249

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kim SY, Kang KL, Lee JC, Heo JS (2012) Nicotinic acetylcholine receptor alpha7 and beta4 subunits contribute nicotine-induced apoptosis in periodontal ligament stem cells. Mol Cells 33:343–350. https://doi.org/10.1007/s10059-012-2172-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sato T, Abe T, Nakamoto N, Tomaru Y, Koshikiya N, Nojima J, Kokabu S, Sakata Y, Kobayashi A, Yoda T (2008) Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line. Biochem Biophys Res Commun 377:126–130. https://doi.org/10.1016/j.bbrc.2008.09.114

    Article  CAS  PubMed  Google Scholar 

  57. Chu M, Guo J, Chen CY (2005) Long-term exposure to nicotine, via ras pathway, induces cyclin D1 to stimulate G1 cell cycle transition. J Biol Chem 280:6369–6379. https://doi.org/10.1074/jbc.M408947200

    Article  CAS  PubMed  Google Scholar 

  58. Pramanik KC, Kudugunti SK, Fofaria NM, Moridani MY, Srivastava SK (2013) Caffeic acid phenethyl ester suppresses melanoma tumor growth by inhibiting PI3K/AKT/XIAP pathway. Carcinogenesis 34:2061–2070. https://doi.org/10.1093/carcin/bgt154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430:199–205. https://doi.org/10.1042/BJ20100814

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaleshwar P. Singh.

Ethics declarations

Conflict of interest

All authors declare that they have no financial conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YW., Singh, K.P. Duration-dependent effects of nicotine exposure on growth and AKT activation in human kidney epithelial cells. Mol Cell Biochem 448, 51–60 (2018). https://doi.org/10.1007/s11010-018-3312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3312-1

Keywords

Navigation