Ecto-enzymes activities in splenic lymphocytes of mice experimentally infected by Trypanosoma cruzi and treated with specific avian immunoglobulins: an attempt to improve the immune response

  • Thirssa H. Grando
  • Matheus D. Baldissera
  • Guilherme Do Carmo
  • Camila B. Oliveira
  • Eduarda T. Santi
  • Pedro Henrique Doleski
  • Daniela B. R. Leal
  • Lenita Moura Stefani
  • Ricardo E. Mendes
  • Aleksandro S. Da Silva
  • Silvia G. Monteiro


The aim of this study was to evaluate the therapeutic efficacy of specific avian polyclonal antibodies (IgY) against Trypanosoma cruzi and their interaction with ecto-enzymes of the purinergic system (NTPDase and adenosine deaminase (ADA) activities) in splenic lymphocytes. For this, mice were divided into six groups: three non-infected (A, B, and C) and three infected (D, E, and F). The groups A and D were composed by negative and positive controls, respectively; while the groups B and E were treated prophylactically with IgY (50 mg/kg), and the groups C and F were treated therapeutically with IgY (50 mg/kg). Treatment with IgY reduced parasitemia on day 6 post-infection (PI) compared to the infected control group, but it was similar on day 8 PI. Moreover, infected and treated animals (the groups E and F) did not show neither amastigotes in the cardiac tissue nor cardiac lesions when compared to the positive control group (the group D). The E-NTPDase (ATP and ADP as substrate) and ADA activities in splenic lymphocytes increased significantly in the positive control group (the group D) compared to the negative control group (the group A). The therapeutic treatment of IgY (the group F) was able to prevent the increase of E-NTPDase and E-ADA activities compared to the positive control group (the group D), but this finding was not observed in animals that received the prophylactic treatment (the group E). The therapeutic treatment of IgY may be considered an interesting approach to improve the immune response of mice experimentally infected by T. cruzi.


Chagas disease Avian immunoglobulins Egg yolk antibodies 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures in this study were approved by the Animal Welfare Committee of Ethics in Animal Experimentation of the Universidade Federal de Santa Maria (UFSM), under protocol number 5699170915, following the guidelines established by Brazilian Society of Science in Laboratory Animals.


  1. 1.
    Campbell DA, Westenberger SJ, Sturm NR (2004) The determinants of Chagas disease: connecting parasite and host genetics. Curr Mol Med 4:549–562CrossRefPubMedGoogle Scholar
  2. 2.
    Martin DL, Lowe KR, McNeill T, Thiele EA, Roellig DM, Zajdowicz J, Hunter SA, Brubaker SA (2015) Potential sexual transmission of Trypanosoma cruzi in mice. Acta Trop 149:15–18CrossRefPubMedGoogle Scholar
  3. 3.
    Giarola NL, de Almeida-Amaral EE, Collopy-Júnior I, Fonseca-de-Souza AL, Majerowicz D, Paes LS, Gondim KC, Meyer-Fernandes JR (2013) Trypanosoma cruzi: effects of heat shock on ecto-ATPase activity. Exp Parasitol 133:434–441CrossRefPubMedGoogle Scholar
  4. 4.
    Tarleton RL (2007) Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19:430–434CrossRefPubMedGoogle Scholar
  5. 5.
    Souza VC, Schlemmer KB, Noal CB, Jaques JA, Zimmermann CE, Leal CA, Fleck J, Casali EA, Morsch VM, Schetinger MR, Leal DB (2012) E-NTPDase and E-ADA activities are altered in lymphocytes of patients with indeterminate form of Chagas disease. Parasitol Int 61:690–696CrossRefGoogle Scholar
  6. 6.
    Ralevic V, Burnstock G (2003) Involvement of purinergic signaling in cardiovascular diseases. Drug News Perspect 16:133–140CrossRefPubMedGoogle Scholar
  7. 7.
    Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 50-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404CrossRefPubMedGoogle Scholar
  8. 8.
    Di Virgilio F, Boeynaems JM, Robson SC (2009) Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 9:507–513CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gessi S, Varani K, Merighi S, Fogli E, Sacchetto V, Benini A, Leung E, Mac-Lennan S, Borea PA (2007) Adenosine and lymphocyte regulation. Purinergic Signal 3:109–116CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    do Carmo GM, Doleski PH, de Sá MF, Grando TH, Bottari NB, Leal DB, Gressler LT, Henker LC, Mendes RE, Monteiro SG, Da Silva AS (2017) Purinergic enzymatic activities in lymphocytes and cardiomyocytes of mice acutely infected by Trypanosoma cruzi modulating the inflammatory responses. Exp Parasitol 175:44–50CrossRefPubMedGoogle Scholar
  12. 12.
    Wilkinson SR, Kelly JM (2009) Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev Mol Med 11:1–24CrossRefGoogle Scholar
  13. 13.
    Castro JA, de Mecca MM, Bartel LC (2006) Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol 25:471–479CrossRefPubMedGoogle Scholar
  14. 14.
    Olovsson M, Larsson A (1993) Biotin labelling of chicken antibodies and their subsequent use in ELISA and immunohistochemistry. Comp Immunol Microbiol Infect Dis 16:145–152CrossRefPubMedGoogle Scholar
  15. 15.
    Svendsen LB, Crowley A, Stodulski G, Hau J (1996) Antibody production in rabbits and chickens immunized with human IgG A comparison of titre and avidity development in rabbit serum, chicken serum and egg yolk using three different adjuvants. J Immunol Methods 191:113–120CrossRefGoogle Scholar
  16. 16.
    Contreras VT, Lima AR, Navarro MC, Arteaga RY, Graterol D, Cabello L, Farias M (2005) Produción y purificación de anticuerpos (IgY) a partir de huevos de gallinas inmuizadas com epimastigotas de Trypanosoma cruzi. Salus 9:33–44Google Scholar
  17. 17.
    Schade R, Staak C, Hendriksen C, Erhard M, Hugl M, Koch G, Larsson A, Pollmann W, van Regenmortel M, Rijke E, Spielmann H, Steinbusch H, Straughan D (1996) The production of Avian (Egg Yolk) Antibodies: IgY. Altern Lab Animals 24:925–934Google Scholar
  18. 18.
    Sampaio LCL, Baldissera MD, Grando TH, Gressler L, Capeleto DM, de As MF, de Jesus FP, dos Santos AG, Anciuti AN, Colonetti K, Stainki DR, Monteiro SG (2014) Production, purification and therapeutic potential of egg yolk antibodies for treating Trypanosoma evansi infection. Vet Parasitol 204:96–103CrossRefPubMedGoogle Scholar
  19. 19.
    Reilly MR, Domingo R, Sandhu J (1997) Oral delivery of antibodies: future pharmacokinetic trends. Clin Pharmacokin 32:313–323CrossRefGoogle Scholar
  20. 20.
    Silva LH, Nussenzweig V (1953) Sobre uma cepa de Trypanosoma cruzi altamente virulenta para camundongo branco. Folia Clin Biol 20:191e207Google Scholar
  21. 21.
    Grando TH, Baldissera MD, Sá MF, Carmo GM, Porto BCZ, Aguirre GSV, Azevedo MI, Jesus FPK, Santurio JM, Sagrillo MR, Stefani LM, Monteiro SG (2017) Avian antibodies (IgY) against Trypanosoma cruzi: purification and characterization studies. J Immunol Methods 449:56–61CrossRefPubMedGoogle Scholar
  22. 22.
    Brener Z (1962) Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 4:389–396PubMedGoogle Scholar
  23. 23.
    Doleski PH, Adefegha SA, Cabral FL, Leal DBR (2017) Characterization of E-NTPDase (EC activity in hepatic lymphocytes: a different activity profile from peripheral lymphocytes. Cell Biochem Funct 35:105–112CrossRefPubMedGoogle Scholar
  24. 24.
    Bergmeyer H (1983) Methods of enzymatic analysis. Verlag Chemie, Deerfiled BeachGoogle Scholar
  25. 25.
    Leal DB, Streher CA, Neu TN, Bittencourt FP, Leal CA, da Silva JE, Morsch VM, Schetinger MR (2005) Characterization of NTPDase (NTPDase1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC activity in human lymphocytes. Biochim Biophys Acta 1721:9–15CrossRefPubMedGoogle Scholar
  26. 26.
    Chan K, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-ATPase activity. Anal Biochem 157:375–378CrossRefPubMedGoogle Scholar
  27. 27.
    Giusti G, Gakis C (1971) Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme 12:417–425CrossRefPubMedGoogle Scholar
  28. 28.
    Olivera GC, Postan M, González MN (2015) Effects of artesunate against Trypanosoma cruzi. Exp Parasitol 156:26–31CrossRefPubMedGoogle Scholar
  29. 29.
    Coura JR, Borges-Pereira J (2010) Chagas disease: 100 years after its discovery. A systemic review. Acta Trop 115:5–13CrossRefPubMedGoogle Scholar
  30. 30.
    Baldissera MD, Souza CF, Grando TH, da Silva AS, Monteiro SG (2016) Involvement of oxidative stress, cholinergic and adenosinergic systems on renal damage caused by Trypanosoma evansi: relationship with lipid peroxidation. Microb Pathog 99:191–195CrossRefPubMedGoogle Scholar
  31. 31.
    Di Virgilio F (2005) Purinergic mechanism in the immune system: a signal of danger for dendritic cells. Purinergic Signal 1:205–209CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Boeynaems JM, Communi D (2006) Modulation of inflammation by extracellular nucleotides. J Invest Dermatol 126:943–944CrossRefPubMedGoogle Scholar
  33. 33.
    Sitkovsky MV (2003) Use of the A(2A) adenosine receptor as a physiological immmunosupressor and to engineer inflammation in vivo. Biochem Pharmacol 65:493–501CrossRefPubMedGoogle Scholar
  34. 34.
    Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26:299–304CrossRefPubMedGoogle Scholar
  35. 35.
    Oliveira CB, Da Silva AS, Souza VC, Costa MM, Jaques JA, Leal DB, Lopes ST, Monteiro SG (2012) NTPDase activity in lymphocytes of rats infected by Trypanosoma evansi. Parasitology 139:232–236CrossRefPubMedGoogle Scholar
  36. 36.
    Kalvegren H, Fridfeldt J, Bengtsson T (2010) The role of plasma adenosine deaminase in chemoattractant-stimulated oxygen radical production in neutrophils. Eur J Cell Biol 89:462–467CrossRefPubMedGoogle Scholar
  37. 37.
    Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39CrossRefPubMedGoogle Scholar
  38. 38.
    Grosskopf HM, Schwertz CI, Machado G, Bottari NB, da Silva ES, Gabriel ME, Lucca NJ, Alves MS, Schetinger MRC, Morsch VM, Mendes RE, da Silva AS (2017) Cattle naturally infected by Eurytrema coelomaticum: relation between adenosine deaminase activity and zinc levels. Res Vet Sci 110:79–84CrossRefPubMedGoogle Scholar
  39. 39.
    Baldissera MD, Pivoto FL, Bottari NB, Tonin AA, Machado G, Aires AR, Rocha JFX, Pelinson LP, Dalenogare DP, Schetinger MRC, Morsch VM, Leal MLR, Da Silva AS (2015) Effect of zinc supplementation on ecto-adenosine deaminase 281 activity in lambs infected by Haemonchus contortus: highlights on acute phase of disease. Exp Parasitol 151–152:34–38CrossRefPubMedGoogle Scholar
  40. 40.
    Baldissera MD, Bottari NB, Mendes RE, Schwertz CI, Lucca NJ, Dalenogare D, Bochi GV, Moresco RN, Morsch VM, Schetinger MRC, Rech VC, Jaques JA, Da Silva AS (2015) Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: influences of these enzymes on inflammatory response and pathological findings. Pathol Res Pract 211:871–876CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thirssa H. Grando
    • 1
  • Matheus D. Baldissera
    • 1
  • Guilherme Do Carmo
    • 1
  • Camila B. Oliveira
    • 4
  • Eduarda T. Santi
    • 1
  • Pedro Henrique Doleski
    • 1
  • Daniela B. R. Leal
    • 1
  • Lenita Moura Stefani
    • 2
  • Ricardo E. Mendes
    • 3
  • Aleksandro S. Da Silva
    • 2
  • Silvia G. Monteiro
    • 1
  1. 1.Department of Microbiology and ParasitologyUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  2. 2.Department of Animal ScienceUniversidade do Estado de Santa Catarina (UDESC)ChapecóBrazil
  3. 3.Veterinary Pathology LaboratoryInstituto Federal Catarinense (IFC)ConcórdiaBrazil
  4. 4.Universidade Federal de Pelotas (UFPel)PelotasBrazil

Personalised recommendations