Skip to main content

Advertisement

Log in

Berberine activates bitter taste responses of enteroendocrine STC-1 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glucagon-like peptide-1 (GLP-1) is involved in the regulation of insulin secretion and glucose homeostasis. GLP-1 release is stimulated when berberine interacts with a novel G protein family (TAS2Rs) in enteroendocrine cells. In this study, we used STC-1 cells and examined a marked increase in Ca2+ in response to various bitter compounds. Ca2+ responses to traditional Chinese medicine extracts, including berberine, phellodendrine and coptisine, in STC-1 cells were suppressed by the phospholipase C (PLC) inhibitor U-73122, suggesting the involvement of bitter taste receptors in changing the physiological status of enteroendocrine cells in a PLC-dependent manner. STC-1 cells showed berberine-up-regulated preproglucagon (GLP-1 precursor) mRNA and GLP-1 secretion. A QPCR analysis demonstrated that TAS2R38, a subtype of the bitter taste receptor, was associated with GLP-1 secretion. Berberine-mediated GLP-1 secretion was attenuated in response to small interfering RNA silencing of TAS2R38. The current studies demonstrated that Gα-gustducin co-localized with GLP-1 and Tas2r106 in the STC-1 cells. We further utilized inhibitors of PLC and TRPM5, which are known to participate in taste signal transduction, to investigate the underlying pathways mediated in berberine-induced GLP-1 secretion. Berberine-induced GLP-1 release from enteroendocrine cells is modulated in a PLC-dependent manner through a process involving the activation of bitter taste receptors. Together, our data demonstrated a berberine-mediated GLP-1 secretion pathway in mouse enteroendocrine cells that could be of therapeutic relevance to hyperglycemia and the role of bitter taste receptors in the function of the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100:8981–8986. https://doi.org/10.1073/pnas.1531172100

    Article  PubMed  CAS  Google Scholar 

  2. Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107:3210–3215. https://doi.org/10.1073/pnas.0911934107

    Article  PubMed  Google Scholar 

  3. Saunders CJ, Christensen M, Finger TE, Tizzano M (2014) Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci USA 111:6075–6080. https://doi.org/10.1073/pnas.1402251111

    Article  PubMed  CAS  Google Scholar 

  4. Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, Kreindler JL, Margolskee RF, Cohen NA (2014) Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 124:1393–1405. https://doi.org/10.1172/JCI72094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E (2002) Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA 99:2392–2397. https://doi.org/10.1073/pnas.042617699

    Article  PubMed  CAS  Google Scholar 

  6. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 104:15075–15080. https://doi.org/10.1073/pnas.0706678104

    Article  PubMed  CAS  Google Scholar 

  7. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 104:15069–15074. https://doi.org/10.1073/pnas.0706890104

    Article  PubMed  CAS  Google Scholar 

  8. Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature 404:601–604. https://doi.org/10.1038/35007072

    Article  PubMed  CAS  Google Scholar 

  9. Mosinger B, Redding KM, Parker MR, Yevshayeva V, Yee KK, Dyomina K, Li Y, Margolskee RF (2013) Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility. Proc Natl Acad Sci USA 110:12319–12324. https://doi.org/10.1073/pnas.1302827110

    Article  PubMed  Google Scholar 

  10. Singh N, Vrontakis M, Parkinson F, Chelikani P (2011) Functional bitter taste receptors are expressed in brain cells. Biochem Biophys Res Commun 406:146–151. https://doi.org/10.1016/j.bbrc.2011.02.016

    Article  PubMed  CAS  Google Scholar 

  11. Prandi S, Bromke M, Hubner S, Voigt A, Boehm U, Meyerhof W, Behrens M (2013) A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131. PLoS ONE 8:e82820. https://doi.org/10.1371/journal.pone.0082820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rozengurt E (2006) Taste receptors in the gastrointestinal tract. I: bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol. https://doi.org/10.1152/ajpgi.00073.2006

    Article  PubMed  Google Scholar 

  13. Egan JM, Margolskee RF (2008) Taste cells of the gut and gastrointestinal chemosensation. Mol Interv 8:78–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Herness MS, Gilbertson TA (1999) Cellular mechanisms of taste transduction. Annu Rev Physiol 61:873–900. https://doi.org/10.1146/annurev.physiol.61.1.873

    Article  PubMed  CAS  Google Scholar 

  15. Katz DB, Nicolelis MA, Simon SA (2000) Nutrient tasting and signaling mechanisms in the gut. IV: there is more to taste than meets the tongue. Am J Physiol Gastrointest Liver Physiol 278:G6-9

    Article  PubMed  Google Scholar 

  16. Kokrashvili Z, Yee KK, Ilegems E, Iwatsuki K, Li Y, Mosinger B, Margolskee RF (2014) Endocrine taste cells. Br J Nutr 111(Suppl 1):S23-9. https://doi.org/10.1017/S0007114513002262

    Article  PubMed  CAS  Google Scholar 

  17. Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I (2011) Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci USA 108:2094–2099. https://doi.org/10.1073/pnas.1011508108

    Article  PubMed  Google Scholar 

  18. Dotson CD, Zhang L, Xu H, Shin YK, Vigues S, Ott SH, Elson AE, Choi HJ, Shaw H, Egan JM, Mitchell BD, Li X, Steinle NI, Munger SD (2008) Bitter taste receptors influence glucose homeostasis. PLoS ONE 3:e3974. https://doi.org/10.1371/journal.pone.0003974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kokrashvili Z, Mosinger B, Margolskee RF (2009) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 90:822S–825S. https://doi.org/10.3945/ajcn.2009.27462T

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yu Y, Liu L, Wang X, Liu X, Liu X, Xie L, Wang G (2010) Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies. Biochem Pharmacol 79:1000–1006. https://doi.org/10.1016/j.bcp.2009.11.017

    Article  PubMed  CAS  Google Scholar 

  21. Lu SS, Yu YL, Zhu HJ, Liu XD, Liu L, Liu YW, Wang P, Xie L, Wang GJ (2009) Berberine promotes glucagon-like peptide-1 (7–36) amide secretion in streptozotocin-induced diabetic rats. J Endocrinol. https://doi.org/10.1677/JOE-08-0419

    Article  PubMed  Google Scholar 

  22. Liu C, Wang Z, Song Y, Wu D, Zheng X, Li P, Jin J, Xu N, Li L (2015) Effects of berberine on amelioration of hyperglycemia and oxidative stress in high glucose and high fat diet-induced diabetic hamsters in vivo. Biomed Res Int 2015:313808. https://doi.org/10.1155/2015/313808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chang W, Chen L, Hatch GM (2015) Berberine as a therapy for type 2 diabetes and its complications: from mechanism of action to clinical studies. Biochem Cell Biol 93:479–486. https://doi.org/10.1139/bcb-2014-0107

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Q, Piao XL, Piao XS, Lu T, Wang D, Kim SW (2011) Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem Toxicol 49:61–69. https://doi.org/10.1016/j.fct.2010.09.032

    Article  PubMed  CAS  Google Scholar 

  25. Jang MH, Kim HY, Kang KS, Yokozawa T, Park JH (2009) Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Arch Pharm Res 32:341–345. https://doi.org/10.1007/s12272-009-1305-z

    Article  PubMed  CAS  Google Scholar 

  26. Auyeung KK, Ko JK (2009) Coptis chinensis inhibits hepatocellular carcinoma cell growth through nonsteroidal anti-inflammatory drug-activated gene activation. Int J Mol Med 24:571–577

    PubMed  CAS  Google Scholar 

  27. Grenier D, La VD (2011) Proteases of Porphyromonas gingivalis as important virulence factors in periodontal disease and potential targets for plant-derived compounds: a review article. Curr Drug Targets 12:322–331

    Article  PubMed  CAS  Google Scholar 

  28. Kwon HA, Kwon YJ, Kwon DY, Lee JH (2008) Evaluation of antibacterial effects of a combination of Coptidis Rhizoma, Mume Fructus, and Schizandrae Fructus against Salmonella. Int J Food Microbiol 127:180–183. https://doi.org/10.1016/j.ijfoodmicro.2008.06.020

    Article  PubMed  Google Scholar 

  29. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170. https://doi.org/10.1093/chemse/bjp092

    Article  PubMed  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  31. Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B (2008) The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 22:1343–1355. https://doi.org/10.1096/fj.07-9591com

    Article  PubMed  CAS  Google Scholar 

  32. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117:13–23. https://doi.org/10.1172/JCI30227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E (2006) Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 291:G792-802. https://doi.org/10.1152/ajpgi.00074.2006

    Article  PubMed  CAS  Google Scholar 

  34. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–1225. https://doi.org/10.1126/science.1080190

    Article  PubMed  CAS  Google Scholar 

  35. Dotson CD, Shaw HL, Mitchell BD, Munger SD, Steinle NI (2010) Variation in the gene TAS2R38 is associated with the eating behavior disinhibition in Old Order Amish women. Appetite. https://doi.org/10.1016/j.appet.2009.09.011

    Article  PubMed  Google Scholar 

  36. Keller M, Liu X, Wohland T, Rohde K, Gast MT, Stumvoll M, Kovacs P, Tonjes A, Bottcher Y (2013) TAS2R38 and its influence on smoking behavior and glucose homeostasis in the German Sorbs. PLoS ONE 8:e80512. https://doi.org/10.1371/journal.pone.0080512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liang J, Chen F, Gu F, Liu X, Li F, Du D (2017) Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells. Mol Cell Biochem 428:193–202. https://doi.org/10.1007/s11010-016-2929-1

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301

    Article  PubMed  CAS  Google Scholar 

  39. Li JY, Wang XB, Luo JG, Kong LY (2015) Seasonal variation of alkaloid contents and anti-inflammatory activity of Rhizoma coptidis based on fingerprints combined with chemometrics methods. J Chromatogr Sci 53:1131–1139. https://doi.org/10.1093/chromsci/bmu175

    Article  PubMed  CAS  Google Scholar 

  40. Yin J, Xing H, Ye J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57:712–717. https://doi.org/10.1016/j.metabol.2008.01.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang H, Wei J, Xue R, Wu JD, Zhao W, Wang ZZ, Wang SK, Zhou ZX, Song DQ, Wang YM, Pan HN, Kong WJ, Jiang JD (2010) Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism. https://doi.org/10.1016/j.metabol.2009.07.029

    Article  PubMed Central  PubMed  Google Scholar 

  42. Chang W, Zhang M, Li J, Meng Z, Wei S, Du H, Chen L, Hatch GM (2013) Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase. Metabolism 62:1159–1167. https://doi.org/10.1016/j.metabol.2013.02.007

    Article  PubMed  CAS  Google Scholar 

  43. Kim SH, Shin EJ, Kim ED, Bayaraa T, Frost SC, Hyun CK (2007) Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol Pharm Bull 30:2120–2125

    Article  PubMed  CAS  Google Scholar 

  44. Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, Li F, Tang J, Chen M, Chen J (2007) Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism. https://doi.org/10.1016/j.metabol.2006.10.025

    Article  PubMed  Google Scholar 

  45. Hu JP, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K (2008) Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways. Eur J Pharmacol 580:70–79. https://doi.org/10.1016/j.ejphar.2007.11.013

    Article  PubMed  CAS  Google Scholar 

  46. Li L, Huang T, Tian C, Xiao Y, Kou S, Zhou X, Liu S, Ye X, Li X (2016) The defensive effect of phellodendrine against AAPH-induced oxidative stress through regulating the AKT/NF-kappaB pathway in zebrafish embryos. Life Sci 157:97–106. https://doi.org/10.1016/j.lfs.2016.05.032

    Article  PubMed  CAS  Google Scholar 

  47. Sanematsu K, Yoshida R, Shigemura N, Ninomiya Y (2014) Structure, function, and signaling of taste G-protein-coupled receptors. Curr Pharm Biotechnol 15:951–961

    Article  PubMed  CAS  Google Scholar 

  48. Liman ER (2014) Trpm5. Handb Exp Pharmacol 222:489–502. https://doi.org/10.1007/978-3-642-54215-2_19

    Article  PubMed  CAS  Google Scholar 

  49. Kim KS, Egan JM, Jang HJ (2014) Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 57:2117–2125. https://doi.org/10.1007/s00125-014-3326-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Chinese National Natural Science Foundation (Grant Nos. 31571171and 31100838), the Shanghai Natural Science Foundation (Grant No.15ZR1414900), the Key Laboratory of Medical Electrophysiology (Southwest Medical University) of Ministry of Education of China (Grant No. 201502), and the Young Teachers of Shanghai Universities Training Program. The authors thank Shenghui Xing and Qian Li for their selfless help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongshu Du or Fuxue Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Liang, J., Gu, F. et al. Berberine activates bitter taste responses of enteroendocrine STC-1 cells. Mol Cell Biochem 447, 21–32 (2018). https://doi.org/10.1007/s11010-018-3290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3290-3

Keywords

Navigation