Skip to main content
Log in

The toxic nature of murine amylin and the immune responsivity of pancreatic islet to conformational antibody in mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The human amylin is a pancreatic peptide hormone found in hyperhormonemic state along with insulin in subclinical diabetes. Amylin has been associated with the pathology of type 2 diabetes, particularly due to its ability to assembly into toxic oligomers and amyloid specimens. On the other hand, some variants such as murine amylin has been described as non-amyloidogenic, either in vitro or in vivo. Recent data have demonstrated the amyloid propensity of murine amylin and the therapeutic analogue pramlintide, suggesting a universality for amylin amyloidosis. Here, we report the amyloidogenesis of murine amylin, which showed lower responsivity to the fluorescent probe thioflavin T compared to human amylin, but presented highly organized fibrilar amyloid material. The aggregation of murine amylin also resulted in the formation of cytotoxic specimens, as evaluated in vitro in INS-1 cells. The aggregation product from murine amylin was responsive to a specific antibody raised against amyloid oligomers, the A11 oligomer antibody. Pancreatic islets of wild-type Swiss male mice have also shown responsivity for the anti-oligomer, indicating the natural abundance of such specimen in rodents. These data provide for the first time evidences for the toxic nature of oligomeric assemblies of murine amylin and its existence in wild-type, non-transgenic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

IAPP:

Islet amyloid polypeptide

References

  1. Opie EL (1901) The relation Oe diabetes mellitus to lesions of the pancreas. hyaline degeneration of the islands Oe Langerhans. J Exp Med 5:527–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Cooper GJ, Willis AC, Clark A et al (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 84:8628–8632

    Article  PubMed  CAS  Google Scholar 

  3. Westermark P, Wernstedt C, Wilander E et al (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 84:3881–3885

    Article  PubMed  CAS  Google Scholar 

  4. Westermark P, Engström U, Johnson KH et al (1990) Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 87:5036–5040

    Article  PubMed  CAS  Google Scholar 

  5. Deber CM, Therien AG (2002) Putting the β-breaks on membrane protein misfolding. Nat Struct Mol Biol 9:318–319. https://doi.org/10.1038/nsb0502-318

    Article  CAS  Google Scholar 

  6. McQueen J (2005) Pramlintide acetate. Am J Health Syst Pharm 62:2363–2372. https://doi.org/10.2146/ajhp050341

    Article  PubMed  CAS  Google Scholar 

  7. da Silva DC, Fontes GN, Erthal LCS, Lima LMTR. (2016) Amyloidogenesis of the amylin analogue pramlintide. Biophys Chem 219:1–8. https://doi.org/10.1016/j.bpc.2016.09.007

    Article  PubMed  CAS  Google Scholar 

  8. Palmieri LC, Melo-Ferreira B, Braga CA et al (2013) Stepwise oligomerization of murine amylin and assembly of amyloid fibrils. Biophys Chem 180–181:135–144. https://doi.org/10.1016/j.bpc.2013.07.013

    Article  PubMed  CAS  Google Scholar 

  9. Erthal LCS, Marques AF, Almeida FCL et al (2016) Regulation of the assembly and amyloid aggregation of murine amylin by zinc. Biophys Chem 218:58–70. https://doi.org/10.1016/j.bpc.2016.09.008

    Article  PubMed  CAS  Google Scholar 

  10. Wong AG, Wu C, Hannaberry E et al (2016) Analysis of the amyloidogenic potential of pufferfish (Takifugu rubripes) islet amyloid polypeptide highlights the limitations of thioflavin-T assays and the difficulties in defining amyloidogenicity. Biochemistry 55:510–518. https://doi.org/10.1021/acs.biochem.5b01107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Green J, Goldsbury C, Mini T et al (2003) Full-length rat amylin forms fibrils following substitution of single residues from human amylin. J Mol Biol 326:1147–1156

    Article  PubMed  CAS  Google Scholar 

  12. Milton NGN, Harris JR (2013) Fibril formation and toxicity of the non-amyloidogenic rat amylin peptide. Micron 44:246–253. https://doi.org/10.1016/j.micron.2012.07.001

    Article  PubMed  CAS  Google Scholar 

  13. Lopes DHJ, Colin C, Degaki TL et al (2004) Amyloidogenicity and cytotoxicity of recombinant mature human islet amyloid polypeptide (rhIAPP). J Biol Chem 279:42803–42810. https://doi.org/10.1074/jbc.M406108200

    Article  PubMed  CAS  Google Scholar 

  14. Gurlo T, Ryazantsev S, Huang C et al (2010) Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol 176:861–869. https://doi.org/10.2353/ajpath.2010.090532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wong WPS, Scott DW, Chuang C-L et al (2008) Spontaneous diabetes in hemizygous human amylin transgenic mice that developed neither islet amyloid nor peripheral insulin resistance. Diabetes 57:2737–2744. https://doi.org/10.2337/db06-1755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  17. LeVine H (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  PubMed  CAS  Google Scholar 

  18. Trikha S, Jeremic AM (2011) Clustering and internalization of toxic amylin oligomers in pancreatic cells require plasma membrane cholesterol. J Biol Chem 286:36086–36097. https://doi.org/10.1074/jbc.M111.240762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Costes S, Langen R, Gurlo T et al (2013) β-Cell failure in type 2 diabetes: a case of asking too much of too few? Diabetes 62:327–335. https://doi.org/10.2337/db12-1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643. https://doi.org/10.1074/jbc.R800016200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Landreh M, Sawaya MR, Hipp MS et al (2016) The formation, function and regulation of amyloids: insights from structural biology. J Intern Med 280:164–176. https://doi.org/10.1111/joim.12500

    Article  PubMed  CAS  Google Scholar 

  22. Zhao H-L, Sui Y, Guan J et al (2009) Amyloid oligomers in diabetic and nondiabetic human pancreas. Transl Res J Lab Clin Med 153:24–32. https://doi.org/10.1016/j.trsl.2008.10.009

    Article  CAS  Google Scholar 

  23. Lima LMTR. (2017) Prediabetes definitions and clinical outcomes. Lancet Diabetes Endocrinol 5:92–93. https://doi.org/10.1016/S2213-8587(17)30011-6

    Article  PubMed  Google Scholar 

  24. Lima LMTR (2017) Subclinical diabetes. An Acad Bras Ciênc. https://doi.org/10.1590/0001-3765201720160394

    Article  PubMed  Google Scholar 

  25. Lin C-Y, Gurlo T, Kayed R et al (2007) Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. Diabetes 56:1324–1332. https://doi.org/10.2337/db06-1579

    Article  PubMed  CAS  Google Scholar 

  26. Zhang S, Liu H, Chuang CL et al (2014) The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet β cells. FASEB J 28:5083–5096. https://doi.org/10.1096/fj.14-251744

    Article  PubMed  CAS  Google Scholar 

  27. Ashburn TT, Han H, McGuinness BF, Lansbury PT (1996) Amyloid probes based on congo red distinguish between fibrils comprising different peptides. Chem Biol 3:351–358

    Article  PubMed  CAS  Google Scholar 

  28. Younan ND, Viles JH (2015) A comparison of three fluorophores for the detection of amyloid fibers and prefibrillar oligomeric assemblies. ThT (Thioflavin T); ANS (1-anilinonaphthalene-8-sulfonic acid); and bisANS (4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid). Biochemistry 54:4297–4306. https://doi.org/10.1021/acs.biochem.5b00309

    Article  PubMed  CAS  Google Scholar 

  29. Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489. https://doi.org/10.1126/science.1079469

    Article  PubMed  CAS  Google Scholar 

  30. Zraika S, Hull RL, Verchere CB et al (2010) Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 53:1046–1056. https://doi.org/10.1007/s00125-010-1671-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kim A, Miller K, Jo J et al (2009) Islet architecture: a comparative study. Islets 1:129–136. https://doi.org/10.4161/isl.1.2.9480

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ivone Rosa for excellent technical services, to Dr. Guilherme Augusto (IBqM) for helpful assistance in setting-up dot-blot assays, and to DIMAV-INMETRO and CENABIO-UFRJ for providing access to their analytical platforms. This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro Carlos Chagas Filho (FAPERJ). The funding agencies had no role in the study design, data collection and analysis, or decision to publish or prepare of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Maurício T. R. Lima.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest with the contents of this article. LMTRL is a participant in patent applications by the UFRJ on controlled release of peptides.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erthal, L.C.S., Jotha-Mattos, L., Lara, F.A. et al. The toxic nature of murine amylin and the immune responsivity of pancreatic islet to conformational antibody in mice. Mol Cell Biochem 447, 1–7 (2018). https://doi.org/10.1007/s11010-018-3288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3288-x

Keywords

Navigation