Skip to main content
Log in

The influence of cellular senescence on intracellular vitamin C transport, accumulation, and function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In humans, vitamin C (VC) accumulates at higher concentrations in cells than in plasma, and this intracellular accumulation appears critical to several important physiological functions. However, although VC accumulation decreases in the elderly, the influence of cellular senescence on the transport, accumulation, and function of VC is poorly understood. In this study, we investigated the effects of supplementation with both ascorbic acid (AsA) and dehydroascorbic acid (DehAsA) on the uptake and accumulation of VC, AsA, and DehAsA into cells and the effect of AsA on the levels of intracellular reactive oxygen species (ROS) in human fibroblast TIG-1 cells. We also assessed how that supplementation affected senescence-associated changes in intracellular VC transport and accumulation. AsA supplementation significantly increased intracellular levels of AsA, DehAsA, and total VC (i.e., reduced AsA plus oxidized DehAsA) in senescent cells compared with young cells. DehAsA supplementation also significantly increased intracellular AsA and total VC levels in senescent cells, but not DehAsA, and the increases were less than after adding AsA. Among the molecules related to VC accumulation, the mRNA and protein expressions of sodium-dependent VC transporter 2 (SLC23A2) were increased in senescent cells. Furthermore, intracellular peroxide and superoxide anion levels were higher in senescent cells, with AsA supplementation markedly attenuating spontaneous intracellular peroxide accumulation. Overall, our results therefore suggest that VC transport and accumulation improved in senescent human fibroblast TIG-1 cells due to the adaptive upregulation of sodium-dependent VC transporter 2 in response to increased ROS levels. We conclude that adequate supplementation with AsA can effectively mitigate senescence-associated intracellular ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frikke-Schmidt H, Tveden-Nyborg P, Lykkesfeldt J (2016) L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs. Redox Biol 7:8–13

    Article  PubMed  CAS  Google Scholar 

  2. Liang WJ, Johnson D, Jarvis SM (2001) Vitamin C transport systems of mammalian cells. Mol Membr Biol 18:87–95

    Article  PubMed  CAS  Google Scholar 

  3. Savini I, Rossi A, Pierro C, Avigliano L, Catani MV (2008) SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34:347–355

    Article  PubMed  CAS  Google Scholar 

  4. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M (1997) Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272:18982–18989

    Article  PubMed  CAS  Google Scholar 

  5. Wang Y, Russo TA, Kwon O, Chanock S, Rumsey SC, Levine M (1997) Ascorbate recycling in human neutrophils: induction by bacteria. Proc Natl Acad Sci U S A 94:13816–13819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sotiriou S, Gispert S, Cheng J et al (2002) Ascorbic acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat Med 8:514–517

    Article  PubMed  CAS  Google Scholar 

  7. Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem 269:13685–13688

    PubMed  CAS  Google Scholar 

  8. Sasaki R, Kurokawa T, Kobayasi T, Tero-Kubota S (1983) Influences of sex and age on serum ascorbic acid. Tohoku J Exp Med 140:97–104

    Article  PubMed  CAS  Google Scholar 

  9. Rhie G, Shin MH, Seo JY, Choi WW, Cho KH, Kim KH et al (2001) Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol 117:1212–1217 (Erratum in: J Invest Dermatol 2002;118:741)

    Article  PubMed  CAS  Google Scholar 

  10. Masaki KH, Losonczy KG, Izmirlian G, Foley DJ, Ross GW, Petrovitch H et al (2000) Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology 54:1265–1272

    Article  PubMed  CAS  Google Scholar 

  11. Yoshida M, Takashima Y, Inoue M, Iwasaki M, Otani T, Sasaki S, Tsugane S; JPHC Study Group (2007) Prospective study showing that dietary vitamin C reduced the risk of age-related cataracts in a middle-aged Japanese population. Eur J Nutr 46:118–124

    Article  PubMed  CAS  Google Scholar 

  12. Massip L, Garand C, Paquet ER, Cogger VC, O’Reilly JN, Tworek L et al (2010) Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J 24:158–172

    Article  PubMed  CAS  Google Scholar 

  13. Ishigami A, Kondo Y, Nanba R, Ohsawa T, Handa S, Kubo S et al (2004) SMP30 deficiency in mice causes an accumulation of neutral lipids and phospholipids in the liver and shortens the life span. Biochem Biophys Res Commun 315:575–580

    Article  PubMed  CAS  Google Scholar 

  14. Ishikawa Y, Hashizume K, Kishimoto S, Tezuka Y, Nishigori H, Yamamoto N et al (2012) Effect of vitamin C depletion on UVR-B induced cataract in SMP30/GNL knockout mice. Exp Eye Res 94:85–89

    Article  PubMed  CAS  Google Scholar 

  15. Kondo Y, Sasaki T, Sato Y, Amano A, Aizawa S, Iwama M et al (2008) Vitamin C depletion increases superoxide generation in brains of SMP30/GNL knockout mice. Biochem Biophys Res Commun 377:291–296

    Article  PubMed  CAS  Google Scholar 

  16. Arai KY, Sato Y, Kondo Y, Kudo C, Tsuchiya H, Nomura Y et al (2009) Effects of vitamin C deficiency on the skin of the senescence marker protein-30 (SMP30) knockout mouse. Biochem Biophys Res Commun 385:478–483

    Article  PubMed  CAS  Google Scholar 

  17. Farriol M, Mourelle M, Schwartz S (1994) Effect of ascorbic acid and vitamin E analog on aged fibroblasts. Rev Esp Fisiol 50:253–257

    PubMed  CAS  Google Scholar 

  18. Kashino G, Kodama S, Nakayama Y, Suzuki K, Fukase K, Goto M et al (2003) Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med 35:438–443

    Article  PubMed  CAS  Google Scholar 

  19. Hwang WS, Park SH, Kim HS, Kang HJ, Kim MJ, Oh SJ et al (2007) Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages. Nutr Res Pract 1:105–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Saitoh Y, Morishita A, Mito S, Tsujiya T, Miwa N (2013) Senescence-induced increases in intracellular oxidative stress and enhancement of the need for ascorbic acid in human fibroblasts. Mol Cell Biochem 380:129–141. https://doi.org/10.1007/s11010-013-1666-y

    Article  PubMed  CAS  Google Scholar 

  21. Ohashi M, Aizawa S, Ooka H, Ohsawa T, Kaji K, Kondo H et al (1980) A new human diploid cell strain, TIG-1, for the research on cellular aging. Exp Gerontol 15:121–133

    Article  PubMed  CAS  Google Scholar 

  22. Saitoh Y, Xiao L, Mizuno H, Kato S, Aoshima H, Taira H et al (2010) Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic Res 44:1072–1081

    Article  PubMed  CAS  Google Scholar 

  23. Saitoh Y, Ikeshima M, Kawasaki N, Masumoto A, Miwa N (2016) Transient generation of hydrogen peroxide is responsible for carcinostatic effects of hydrogen combined with platinum nanocolloid, together with increases intracellular ROS, DNA cleavages, and proportion of G2/M-phase. Free Radic Res 50:385–395

    Article  PubMed  CAS  Google Scholar 

  24. Ishikawa T, Casini AF, Nishikimi M (1998) Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase. J Biol Chem 273:28708–28712

    Article  PubMed  CAS  Google Scholar 

  25. Washburn MP, Wells WW (1999) Identification of the dehydroascorbic acid reductase and thioltransferase (Glutaredoxin) activities of bovine erythrocyte glutathione peroxidase. Biochem Biophys Res Commun 257:567–571

    Article  PubMed  CAS  Google Scholar 

  26. Board PG, Menon D (2016) Structure, function and disease relevance of omega-class glutathione transferases. Arch Toxicol 90:1049–1067

    Article  PubMed  CAS  Google Scholar 

  27. Ogawa E (2008) Age-dependent changes in uptake and recycling of ascorbic acid in erythrocytes of Beagle dogs. J Comp Physiol B 178:699–704

    Article  PubMed  CAS  Google Scholar 

  28. Savini I, Rossi A, Catani MV, Ceci R, Avigliano L (2007) Redox regulation of vitamin C transporter SVCT2 in C2C12 myotubes. Biochem Biophys Res Commun 361:385–390

    Article  PubMed  CAS  Google Scholar 

  29. May JM, Qu Z, Morrow JD (2001) Mechanisms of ascorbic acid recycling in human erythrocytes. Biochim Biophys Acta 1528:159–166

    Article  PubMed  CAS  Google Scholar 

  30. Saitoh Y, Fukuoka Y, Nishikimi M, Miwa N (2007) Transfection with glutathione-dependent dehydroascorbate reductase genes exerts cytoprotective effects against hydroperoxide-induced cell injury through vitamin C regeneration and oxidative stress diminishment. Gene Ther Mol Biol 11:143–150

    Google Scholar 

  31. Wells WW, Xu DP, Yang YF, Rocque PA (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265:15361–15364

    PubMed  CAS  Google Scholar 

  32. Allen RG, Tresini M, Keogh BP, Doggett DL, Cristofalo VJ (1999) Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI-38). J Cell Physiol 180:114–122

    Article  PubMed  CAS  Google Scholar 

  33. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 3:748–753

    Article  Google Scholar 

  35. Furumoto K, Inoue E, Nagao N, Hiyama E, Miwa N (1998) Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci 63:935–948

    Article  PubMed  CAS  Google Scholar 

  36. Shima N, Kimoto M, Yamaguchi M, Yamagami S (2011) Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with L-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci 52:8711–8717

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Numbers: JP26450163 and JP17K01862). We would like to thank Ms. Ayako Egawa, Ms. Ayumi Aoyama, and Ms. Kiko Yamato for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasukazu Saitoh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitoh, Y., Nakawa, A., Tanabe, T. et al. The influence of cellular senescence on intracellular vitamin C transport, accumulation, and function. Mol Cell Biochem 446, 209–219 (2018). https://doi.org/10.1007/s11010-018-3287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3287-y

Keywords

Navigation