Skip to main content
Log in

Alpha-synuclein aggregation, Ubiquitin proteasome system impairment, and l-Dopa response in zinc-induced Parkinsonism: resemblance to sporadic Parkinson’s disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alpha-synuclein (α-synuclein) aggregation and impairment of the Ubiquitin proteasome system (UPS) are implicated in Parkinson’s disease (PD) pathogenesis. While zinc (Zn) induces dopaminergic neurodegeneration resulting in PD phenotype, its effect on protein aggregation and UPS has not yet been deciphered. The current study investigated the role of α-synuclein aggregation and UPS in Zn-induced Parkinsonism. Additionally, levodopa (l-Dopa) response was assessed in Zn-induced Parkinsonian model to establish its closeness with idiopathic PD. Male Wistar rats were treated with zinc sulfate (Zn; 20 mg/kg; i.p.) twice weekly for 12 weeks along with respective controls. In few subsets, animals were subsequently treated with l-Dopa for 21 consecutive days following Zn exposure. A significant increase in total and free Zn content was observed in the substantia nigra of the brain of exposed groups. Zn treatment caused neurobehavioral anomalies, striatal dopamine decline, and dopaminergic neuronal cell loss accompanied with a marked increase in α-synuclein expression/aggregation and Ubiquitin-conjugated protein levels in the exposed groups. Zn exposure substantially reduced UPS-associated trypsin-like, chymotrypsin-like, and caspase-like activities along with the expression of SUG1 and β-5 subunits of UPS in the nigrostriatal tissues of exposed groups. l-Dopa treatment rescued from Zn-induced neurobehavioral deficits and restored dopamine levels towards normalcy; however, Zn-induced dopaminergic neuronal loss, reduction in tyrosine hydroxylase expression, and increase in oxidative stress were unaffected. The results suggest that Zn caused UPS impairment, resulting in α-synuclein aggregation subsequently leading to dopaminergic neurodegeneration, and that Zn-induced Parkinsonism exhibited positive l-Dopa response similar to sporadic PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dawson TM, Dawson VL (2003) Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 111:145–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Migliore L, Coppede F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 667:82–97

    Article  PubMed  CAS  Google Scholar 

  3. Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26(Suppl 1):S1–S58

    Article  PubMed  Google Scholar 

  4. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  PubMed  CAS  Google Scholar 

  5. Kumar A, Singh BK, Ahmad I, Shukla S, Patel DK, Srivastava G, Kumar V, Pandey HP, Singh C (2012) Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity. Brain Res 1438:48–64

    Article  PubMed  CAS  Google Scholar 

  6. Kumar V, Singh BK, Chauhan AK, Singh D, Patel DK, Singh C (2016) Minocycline rescues from zinc-induced nigrostriatal dopaminergic neurodegeneration: biochemical and molecular interventions. Mol Neurobiol 53:2761–2777

    Article  PubMed  CAS  Google Scholar 

  7. Singh BK, Kumar A, Ahmad I, Kumar V, Patel DK, Jain SK, Singh C (2011) Oxidative stress in zinc-induced dopaminergic neurodegeneration: implications of superoxide dismutase and heme oxygenase-1. Free Radic Res 45:1207–1222

    Article  PubMed  CAS  Google Scholar 

  8. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Xu L, Pu J (2016) Alpha-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application. Parkinson’s Disease 2016:1720621

    PubMed  PubMed Central  Google Scholar 

  10. Stefanis L (2012) Alpha-synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new models of Parkinson’s disease. J Biomed Biotechnol 2012:845618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Javed H, Kamal MA, Ojha S (2016) An overview on the role of alpha-synuclein in experimental models of Parkinson’s disease from pathogenesis to therapeutics. CNS Neurol Disord Drug Targets 15:1240–1252

    Article  PubMed  CAS  Google Scholar 

  13. Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H (2004) Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J Neurochem 91:451–461

    Article  PubMed  CAS  Google Scholar 

  14. Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52:33–38

    Article  PubMed  CAS  Google Scholar 

  15. Moore DJ, Dawson VL, Dawson TM (2003) Role for the ubiquitin-proteasome system in Parkinson’s disease and other neurodegenerative brain amyloidoses. Neuromolecular Med 4:95–108

    Article  PubMed  Google Scholar 

  16. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659

    Article  PubMed  CAS  Google Scholar 

  17. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46

    Article  PubMed  CAS  Google Scholar 

  18. Zheng C, Geetha T, Babu JR (2014) Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. Neurodegener Dis 14:161–175

    Article  PubMed  CAS  Google Scholar 

  19. McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297:191–194

    Article  PubMed  CAS  Google Scholar 

  20. Sherman NY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32

    Article  PubMed  CAS  Google Scholar 

  21. Wang XF, Li S, Chou AP, Bronstein JM (2006) Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease. Neurobiol Dis 23:198–205

    Article  PubMed  CAS  Google Scholar 

  22. Betarbet R, Sherer TB, Greenamyre JT (2005) Ubiquitin-proteasome system and Parkinson’s diseases. Exp Neurol 191:S17–S27

    Article  CAS  Google Scholar 

  23. Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Sudhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 102:3413–3418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yang W, Tiffany-Castiglioni E (2007) The bipyridyl herbicide paraquat induces proteasome dysfunction in human neuroblastoma SH-SY5Y cells. J Toxicol Environ Health A 70:1849–1857

    Article  PubMed  CAS  Google Scholar 

  25. Izumi Y, Yamamoto N, Matsushima S, Yamamoto T, Takada-Takatori Y, Akaike A, Kume T (2015) Compensatory role of the Nrf2-ARE pathway against paraquat toxicity: relevance of 26S proteasome activity. J Pharmacol Sci 129:150–159

    Article  PubMed  CAS  Google Scholar 

  26. Kwakye GF, McMinimy RA, Aschner M (2017) Disease-toxicant interactions in Parkinson’s disease neuropathology. Neurochem Res 42:1772–1786

    Article  PubMed  CAS  Google Scholar 

  27. Agrawal S, Singh A, Tripathi P, Mishra M, Singh MP, Singh MP (2015) Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurbiol 51:448–465

    Article  CAS  Google Scholar 

  28. Kumar A, Ahmad I, Shukla S, Singh BK, Patel DK, Pandey HP, Singh C (2010) Effect of zinc and paraquat co-exposure on neurodegeneration: modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats. Free Radic Res 44:950–965

    Article  PubMed  CAS  Google Scholar 

  29. Tripathi P, Singh A, Bala L, Patel DK, Singh MP (2017) Ibuprofen protects from cypermethrin-induced changes in the striatal dendritic length and spine density. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0491-9

    Article  PubMed  Google Scholar 

  30. Yang W, Chen L, Ding Y, Zhuang X, Kang UJ (2007) Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1 deficient mice. Hum Mol Genet 16:2900–2910

    Article  PubMed  CAS  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  32. Chauhan AK, Mittra N, Kumar V, Patel DK, Singh C (2016) Inflammation and B-cell lymphoma-2 associated X protein regulate zinc-induced apoptotic degeneration of rat nigrostriatal dopaminergic neurons. Mol Neurobiol 53:5782–5795

    Article  PubMed  CAS  Google Scholar 

  33. Gu Z, Nakamura T, Yao D, Shi ZQ, Lipton SA (2005) Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson’s disease. Cell Death Differ 12:1202–1204

    Article  PubMed  CAS  Google Scholar 

  34. Kim TD, Paik SR, Yang CH, Kim J (2000) Structural changes in alpha-synuclein affect its chaperone-like activity in vitro. Protein Sci 9:2489–2496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Agrawal S, Dixit A, Singh A, Tripathi P, Singh D, Patel DK, Singh M.P (2015) Cyclosporin A and MnTMPyP alleviate α-synuclein expression and aggregation in cypermethrin-induced Parkinsonism. Mol Neurobiol 52:1619–1628

    Article  PubMed  CAS  Google Scholar 

  36. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003) Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem 278:11753–11759

    Article  PubMed  CAS  Google Scholar 

  37. Sawada H, Kohno R, Kihara T, Izumi Y, Sakka N, Ibi M, Nakanishi M, Nakamizo T, Yamakawa K, Shibasaki H, Yamamoto N, Akaike A, Inden M, Kitamura Y, Taniguchi T, Shimohama S (2004) Proteasome mediates dopaminergic neuronal degeneration and its inhibition causes alpha-synuclein inclusions. J Biol Chem 279:10710–10719

    Article  PubMed  CAS  Google Scholar 

  38. Chen M, Chen Q, Cheng XW, Lu TJ, Jia JM, Zhang C, Xiong ZQ (2009) Zn2 + mediates ischemia-induced impairment of the Ubiquitin-proteasome system in the rat hippocampus. J Neurochem 111:1094–1103

    Article  PubMed  CAS  Google Scholar 

  39. Katzenschlager R, Lees AJ (2002) Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol 249(Suppl 2):II19–I24

    PubMed  Google Scholar 

  40. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2012) l-DOPA pharmacokinetics in the MPTP-lesioned macaque model of Parkinson’s disease. Neuropharmacology 63:829–836

    Article  PubMed  CAS  Google Scholar 

  41. Camp DM, Loeffler DA, LeWitt PA (2000) l-DOPA does not enhance hydroxyl radical formation in the nigrostriatal dopamine system of rats with a unilateral 6-hydroxydopamine lesion. J Neurochem 74:1229–1240

    Article  PubMed  CAS  Google Scholar 

  42. Datla KP, Blunt SB, Dexter DT (2001) Chronic l-DOPA administration is not toxic to the remaining dopaminergic nigrostriatal neurons, but instead may promote their functional recovery, in rats with partial 6-OHDA or FeCl(3) nigrostriatal lesions. Mov Disord 16:424–434

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Department of Biotechnology (DBT), New Delhi, India; the Department of Science and Technology (DST), New Delhi, India, and University Grants Commission (UGC), New Delhi, India for providing research fellowship to Vinod Kumar, Namrata Mittra, and Brajesh Kumar Singh/Deepali Singh, respectively. The financial aid provided to Chetna Singh through CSIR-network program “Neurodegenerative Diseases: Causes and Corrections” (miND; BSC0115) is sincerely acknowledged. The CSIR-IITR communication number of this article is 3499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetna Singh.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

This study was approved by the Institutional Animal Ethics Committee. The experiments were performed as per the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) throughout the study.

Additional information

CSIR-IITR Communication Number: 3499

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Singh, D., Singh, B.K. et al. Alpha-synuclein aggregation, Ubiquitin proteasome system impairment, and l-Dopa response in zinc-induced Parkinsonism: resemblance to sporadic Parkinson’s disease. Mol Cell Biochem 444, 149–160 (2018). https://doi.org/10.1007/s11010-017-3239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3239-y

Keywords

Navigation