Skip to main content
Log in

Lipopolysaccharide stimulates endogenous β-glucuronidase via PKC/NF-κB/c-myc signaling cascade: a possible factor in hepatolithiasis formation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatolithiasis is commonly encountered in Southeastern and Eastern Asian countries, but the pathogenesis mechanism of stone formation is still not well understood. Now, the role of endogenous β-glucuronidase in pigment stones formation is being gradually recognized. In this study, the mechanism of increased expression and secretion of endogenous β-glucuronidase during hepatolithiasis formation was investigated. We assessed the endogenous β-glucuronidase, c-myc, p-p65, and p-PKC expression in liver specimens with hepatolithiasis by immunohistochemical staining, and found that compared with that in normal liver samples, the expression of endogenous β-glucuronidase, c-myc, p-p65, and p-PKC in liver specimens with hepatolithiasis significantly increased, and their expressions were positively correlated with each other. Lipopolysaccharide (LPS) induced increased expression of endogenous β-glucuronidase and c-myc in hepatocytes and intrahepatic biliary epithelial cells in a dose- and time-dependent manner, and endogenous β-glucuronidase secretion increased, correspondingly. C-myc siRNA transfection effectively inhibited the LPS-induced expression of endogenous β-glucuronidase. Furthermore, NF-κB inhibitor pyrrolidine dithiocarbamate or PKC inhibitor chelerythrine could effectively inhibit the LPS-induced expression of c-myc and endogenous β-glucuronidase, and the expression of p-p65 was also partly inhibited by chelerythrine. Our clinical observations and experimental data indicate that LPS could induce the increased expression and secretion of endogenous β-glucuronidase via a signaling cascade of PKC/NF-κB/c-myc in hepatocytes and intrahepatic biliary epithelial cells, and endogenous β-glucuronidase might play a possible role in the formation of hepatolithiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

NF-κB:

Nuclear factor kappa B

PKC:

Protein kinase C

PI3K:

Phosphoinositide-3-kinase

IKK:

IκB-α kinase

References

  1. Dey B, Kaushal G, Jacob SE, Barwad A, Pottakkat B (2016) Pathogenesis and management of hepatolithiasis: a report of two cases. J Clin Diagn Res 10:PD11–P13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tazuma S, Unno M, Igarashi Y, Inui K, Uchiyama K, Kai M, Tsuyuguchi T, Maguchi H, Mori T, Yamaguchi K, Ryozawa S, Nimura Y, Fujita N, Kubota K, Shoda J, Tabata M, Mine T, Sugano K, Watanabe M, Shimosegawa T (2017) Evidence-based clinical practice guidelines for cholelithiasis 2016. J Gastroenterol 52:276–300

    Article  PubMed  Google Scholar 

  3. Tazuma S (2006) Gallstone disease: epidemiology, pathogenesis, and classification of biliary stones (common bile duct and intrahepatic). Best Pract Res Clin Gastroenterol 20:1075–1083

    Article  PubMed  Google Scholar 

  4. Tsui WM, Chan YK, Wong CT, Lo YF, Yeung YW, Lee YW (2011) Hepatolithiasis and the syndrome of recurrent pyogenic cholangitis: clinical, radiologic, and pathologic features. Semin Liver Dis 31:33–48

    Article  PubMed  Google Scholar 

  5. Maki T (1966) Pathogenesis of calcium bilirubinate gallstone: role of E. coli, beta-glucuronidase and coagulation by inorganic ions, polyelectrolytes and agitation. Ann Surg 164:90–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ho KJ, Hsu SC, Chen JS, Ho LH (1986) Human biliary beta-glucuronidase: correlation of its activity with deconjugation of bilirubin in the bile. Eur J Clin Invest 16:361–367

    Article  PubMed  CAS  Google Scholar 

  7. Ho KJ, Lin XZ, Yu SC, Chen JS, Wu CZ (1995) Cholelithiasis in Taiwan: gallstone characteristics, surgical incidence, bile lipid composition, and role of beta-glucuronidase. Dig Dis Sci 40:1963–1973

    Article  PubMed  CAS  Google Scholar 

  8. Li N, Xiao L, Cheng S, Xiao B, Cheng W, Li Q (1990) [The changes of beta-glucuronidase in rabbit model with calcium bilirubinate stone]. Hua Xi Yi Ke Da Xue Xue Bao 21:185–187 (Article in Chinese)

    PubMed  CAS  Google Scholar 

  9. Zhang XB, Cui NQ, Li DH (2007) [Effect of clearing heat and removing dampness method on formation of pigment gallstones in rabbits]. Zhongguo Zhong Xi Yi Jie He Za Zhi 27:241–243 (Article in Chinese).

    PubMed  CAS  Google Scholar 

  10. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11:335–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chan KL, Guan XY, Ng IO (2004) High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. Hum Pathol 35:1324–1331

    Article  PubMed  CAS  Google Scholar 

  13. Li FY, Cheng NS, Cheng JQ, Mao H, Jiang LS, Li N, He S (2009) Treatment of chronic proliferative cholangitis with c-myc shRNA. World J Gastroenterol 15:95–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ganguly N, Giang PH, Basu SK, Mir FA, Siddiqui I, Sharma P (2007) Mycobacterium tuberculosis 6-kDa early secreted antigenic target (ESAT-6) protein downregulates lipopolysaccharide induced c-myc expression by modulating the extracellular signal regulated kinases 1/2. BMC Immunol 8:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Grumont RJ, Strasser A, Gerondakis S (2002) B cell growth is controlled by phosphatidylinosotol 3-kinase-dependent induction of Rel/NF-kappaB regulated c-myc transcription. Mol Cell 10:1283–1294

    Article  PubMed  CAS  Google Scholar 

  16. Mishra S, Vinayak M (2013) Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway. Mol Biol Rep 40:1417–1428

    Article  PubMed  CAS  Google Scholar 

  17. Su Y, Wu SD, Jin JZ, Zhang ZH, Fan Y (2006) Role of intestinal barrier in pathogenesis of pigment gallstone in a guinea pig model. Hepatobiliary Pancreat Dis Int 5:443–448

    PubMed  CAS  Google Scholar 

  18. Vítek L, Carey MC (2012) New pathophysiological concepts underlying pathogenesis of pigment gallstones. Clin Res Hepatol Gastroenterol 36:122–129

    Article  PubMed  CAS  Google Scholar 

  19. Stewart L, Grifiss JM, Jarvis GA, Way LW (2006) Biliary bacterial factors determine the path of gallstone formation. Am J Surg 192:598–603

    Article  PubMed  CAS  Google Scholar 

  20. Ho KJ (1985) Human beta-glucuronidase. Studies on the effects of pH and bile acids in regard to its role in the pathogenesis of cholelithiasis. Biochim Biophys Acta 827:197–206

    Article  PubMed  CAS  Google Scholar 

  21. Chen CY, Shiesh SC, Tsao HC, Lin XZ (2000) Human biliary beta-glucuronidase activity before and after relief of bile duct obstruction: is it the major role in the formation of pigment gallstones. J Gastroenterol Hepatol 15:1071–1075

    Article  PubMed  CAS  Google Scholar 

  22. Sethi G, Ahn KS, Aggarwal BB (2008) Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res 6:1059–1070

    Article  PubMed  CAS  Google Scholar 

  23. Asehnoune K, Strassheim D, Mitra S, Yeol Kim J, Abraham E (2005) Involvement of PKCalpha/beta in TLR4 and TLR2 dependent activation of NF-kappaB. Cell Signal 17:385–394

    Article  PubMed  CAS  Google Scholar 

  24. Lee M, Jeon YJ (2001) Paclitaxel-induced immune suppression is associated with NF-kappaB activation via conventional PKC isotypes in lipopolysaccharide-stimulated 70Z/3 pre-B lymphocyte tumor cells. Mol Pharmacol 59:248–253

    Article  PubMed  CAS  Google Scholar 

  25. Zhou X, Yang W, Li J (2006) Ca2+- and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages. J Biol Chem 281:31337–31347

    Article  PubMed  CAS  Google Scholar 

  26. Zeng KW, Li J, Dong X, Wang YH, Ma ZZ, Jiang Y, Jin HW, Tu PF (2013) Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways. Toxicol Appl Pharmacol 273:159–171

    Article  PubMed  CAS  Google Scholar 

  27. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bourgarel-Rey V, Vallee S, Rimet O, Champion S, Braguer D, Desobry A, Briand C, Barra Y (2001) Involvement of nuclear factor kappaB in c-Myc induction by tubulin polymerization inhibitors. Mol Pharmacol 59:1165–1170

    Article  PubMed  CAS  Google Scholar 

  29. Duyao MP, Buckler AJ, Sonenshein GE (1990) Interaction of an NF-kappa B-like factor with a site upstream of the c-myc promoter. Proc Natl Acad Sci USA 87:4727–4731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Duyao MP, Kessler DJ, Spicer DB, Sonenshein GE (1990) Binding of NF-KB-like factors to regulatory sequences of the c-myc gene. Curr Top Microbiol Immunol 166:211–220

    PubMed  CAS  Google Scholar 

  31. Kessler DJ, Duyao MP, Spicer DB, Sonenshein GE (1992) NF-kappa B-like factors mediate interleukin 1 induction of c-myc gene transcription in fibroblasts. J Exp Med 176:787–792

    Article  PubMed  CAS  Google Scholar 

  32. Byun E, Park B, Lim JW, Kim H (2016) Activation of NF-κB and AP-1 mediates hyperproliferation by inducing β-catenin and c-Myc in helicobacter pylori-infected gastric epithelial cells. Yonsei Med J 57:647–651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ji Y, Wang Z, Li Z, Zhang A, Jin Y, Chen H, Le X (2016) Angiotensin II enhances proliferation and inflammation through AT1/PKC/NF-κB signaling pathway in hepatocellular carcinoma cells. Cell Physiol Biochem 39:13–32

    Article  PubMed  CAS  Google Scholar 

  34. Kang YK, Putluri N, Maity S, Tsimelzon A, Ilkayeva O, Mo Q, Lonard D, Michailidis G, Sreekumar A, Newgard CB, Wang M, Tsai SY, Tsai MJ, O’Malley BW (2015) CAPER is vital for energy and redox homeostasis by integrating glucose-induced mitochondrial functions via ERR-α-Gabpa and stress-induced adaptive responses via NF-κB-cMYC. PLoS Genet 11:e1005116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lu Y, Zhu M, Chen W, Yin L, Zhu J, Chen N, Chen W (2014) Tetramethylpyrazine improves oxazolone-induced colitis by inhibiting the NF-κB pathway. Clin Invest Med 37:E1–E9

    Article  PubMed  Google Scholar 

  36. Singh AR, Peirce SK, Joshi S, Durden DL (2014) PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment. Exp Cell Res 327:78–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (81400659).

Author information

Authors and Affiliations

Authors

Contributions

YD and DQ performed experiments; YD and TY analyzed data, interpreted results of experiments, and prepared figures; YD, DC, and WS designed the overall study; YD drafted manuscript; DC and WS approved final version of manuscript.

Corresponding author

Correspondence to Shuodong Wu.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Ethical approval

The study was reviewed and approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University (reference number: 2012PS34K) and written informed consent was obtained from all patients, and performed in accordance with the principles outlined in the Declaration of Helsinki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, D., Dong, Q., Tian, Y. et al. Lipopolysaccharide stimulates endogenous β-glucuronidase via PKC/NF-κB/c-myc signaling cascade: a possible factor in hepatolithiasis formation. Mol Cell Biochem 444, 93–102 (2018). https://doi.org/10.1007/s11010-017-3234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3234-3

Keywords

Navigation