Skip to main content
Log in

Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lowe SW, Cepero E, Evan G (2004) Intrinsic tumor suppression. Nature 432:307–315

    Article  CAS  PubMed  Google Scholar 

  2. Collado M, Serrano M (2010) Senescence in tumors: evidence from mice and humans. Nat Rev Cancer 10:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Campaner S, Doni M, Verrecchia A, Fagà G, Bianchi L, Amati B (2010) Myc, Cdk2 and cellular senescence: old players, new game. Cell Cycle 9:3655–3661

    Article  CAS  PubMed  Google Scholar 

  4. Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016

    Article  CAS  PubMed  Google Scholar 

  5. Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776

    Article  CAS  PubMed  Google Scholar 

  6. Dang CV, Lee LA (1995) c-Myc function in neoplasia. Springer. ISBN 9783540606321

  7. Dang CV (2013) MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med. 10.1101/cshperspect.a014217

  8. Galaktionov K, Chen X, Beach D (1996) Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382:511–517

    Article  CAS  PubMed  Google Scholar 

  9. Hoffman B, Amanullah A, Shafarenko M, Liebermann DA (2002) The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 21:3414–3421

    Article  CAS  PubMed  Google Scholar 

  10. Delgado MD, León J (2010) Myc roles in hematopoiesis and leukemia. Genes Cancer 1:605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peschle C, Mavilio F, Sposi NM, Giampaolo A, Caré A, Bottero L, Bruno M, Mastroberardino G, Gastaldi R, Testa MG (1984) Translocation and rearrangement of c-myc into immunoglobulin a heavy chain locus in primary cells from acute lymphocytic leukemia. Proc Natl Acad Sci USA 81:5514–5518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, Callahan R (1986) Genetic alteration of the c-myc proto-oncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA 83:4834–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlotter CM, Vogt U, Bosse U, Mersch B, Wassmann K (2003) C-myc, not HER-2/neu, can predict recurrence and mortality of patients with node-negative breast cancer. Breast Cancer Res 5:R30–R36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207

    Article  CAS  PubMed  Google Scholar 

  15. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:102–104

    Article  CAS  PubMed  Google Scholar 

  16. Marinkovic D, Marinkovic T, Mahr B, Hess J, Wirth T (2004) Reversible lymphomagenesis in conditionally c-MYC expressing mice. Int J Cancer 110:336–342

    Article  CAS  PubMed  Google Scholar 

  17. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 3:565–577

    Article  CAS  PubMed  Google Scholar 

  18. Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 104:13028–13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J, Clurman BE, Moser MJ, Oshima J, Russell DW, Swisshelm K, Frank S, Amati B, Dalla-Favera R, Monnat RJ Jr (2003) Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 17:1569–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson K, Asawachaicharn N, Galloway DA, Grandori C (2009) c-Myc accelerates S-phase and requires WRN to avoid replication stress. PLoS ONE 4:e5951

    Article  PubMed  PubMed Central  Google Scholar 

  22. Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, Schleker T, Perna D, Tronnersjö S, Murga M, Fernandez-Capetillo O, Barbacid M, Larsson LG, Amati B (2010) Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 12:54–59

    Article  CAS  PubMed  Google Scholar 

  23. Reimann M, Lee S, Loddenkemper C, Dörr JR, Tabor V, Aichele P, Stein H, Dörken B, Jenuwein T, Schmitt CA (2010) Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17:262–272

    Article  CAS  PubMed  Google Scholar 

  24. van Riggelen J, Müller J, Otto T, Beuger V, Yetil A, Choi PS, Kosan C, Möröy T, Felsher DW, Eilers M (2010) The interaction between Myc and Miz1 is required to antagonize TGF-beta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 24:1281–1294

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mermod N, Williams TJ, Tjian R (1988) Enhancer binding factors AP-4 and AP-1 act in concert to activate SV40 late transcription in vitro. Nature 332:557–561

    Article  CAS  PubMed  Google Scholar 

  26. Hu YF, Lüscher B, Admon A, Mermod N, Tjian R (1990) Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev 4:1741–1752

    Article  CAS  PubMed  Google Scholar 

  27. Badinga L, Song S, Simmen RC, Simmen FA (1998) A distal regulatory region of the insulin-like growth factor binding protein-2 (IGFBP-2) gene interacts with the basic helix–loop–helix transcription factor, AP4. Endocrine 8:281–289

    Article  CAS  PubMed  Google Scholar 

  28. Tsujimoto K, Ono T, Sato M, Nishida T, Oguma T, Tadakuma T (2005) Regulation of the expression of caspase-9 by the transcription factor activator protein-4 in glucocorticoid-induced apoptosis. J Biol Chem 280:27638–27644

    Article  CAS  PubMed  Google Scholar 

  29. Jung P, Menssen A, Mayr D, Hermeking HP (2008) AP4 encodes a c-MYC-inducible repressor of p21. Proc Natl Acad Sci USA 105:15046–15051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jackstadt R, Röh S, Neumann J, Jung P, Hoffmann R, Horst D, Berens C, Bornkamm GW, Kirchner T, Menssen A, Hermeking H (2013) AP4 is a mediator of epithelial–mesenchymal transition and metastasis in colorectal cancer. J Exp Med 210:1331–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friess H, Ding J, Kleeff J, Fenkell L, Rosinski JA, Guweidhi A, Reidhaar-Olson JF, Korc M, Hammer J, Büchler MW (2003) Microarray-based identification of differentially expressed growth- and metastasis-associated genes in pancreatic cancer. Cell Mol Life Sci 60:1180–1199

    Article  CAS  PubMed  Google Scholar 

  32. Xinghua L, Bo Z, Yan G, Lei W, Changyao W, Qi L, Lin Y, Kaixiong T, Guobin W, Jianying C (2012) The overexpression of AP4 as a prognostic indicator for gastric carcinoma. Med Oncol 29:871–877

    Article  PubMed  Google Scholar 

  33. Huang Q, Raya A, DeJesus P, Chao SH, Quon KC, Caldwell JS, Chanda SK, Izpisua-Belmonte JC, Schultz PG (2004) Identification of p53 regulators by genome-wide functional analysis. Proc Natl Acad Sci USA 101:3456–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Wong MM, Zhang X, Chiu SK (2015) Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells. Exp Cell Res 339:135–146

    Article  CAS  PubMed  Google Scholar 

  35. Chen S, Chiu SK (2015) AP4 activates cell migration and EMT mediated by p53 in MDA-MB-231 breast carcinoma cells. Mol Cell Biochem 407:57–68

    Article  CAS  PubMed  Google Scholar 

  36. Shi L, Jackstadt R, Siemens H, Li H, Kirchner T, Hermeking H (2014) p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial–mesenchymal transition and metastasis in colorectal cancer. Cancer Res 74:532–542

    Article  CAS  PubMed  Google Scholar 

  37. Binder S, Stanzel BV, Krebs I, Glittenberg C (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26:516–554

    Article  PubMed  Google Scholar 

  38. Proulx S, Landreville S, Guérin SL, Salesse C (2004) Integrin alpha5 expression by the ARPE-19 cell line: comparison with primary RPE cultures and effect of growth medium on the alpha5 gene promoter strength. Exp Eye Res 79:157–165

    Article  CAS  PubMed  Google Scholar 

  39. Pfeffer BA, Philp NJ (2014) Cell culture of retinal pigment epithelium: special Issue. Exp Eye Res 126:1–4

    Article  CAS  PubMed  Google Scholar 

  40. Ricci MS, Jin Z, Dews M, Yu D, Thomas-Tikhonenko A, Dicker DT, El-Deiry WS (2004) Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 24:8541–8555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leontieva OV, Demidenko ZN, Blagosklonny MV (2014) Contact inhibition and high cell density deactivate the mammalian target of rapamycin pathway, thus suppressing the senescence program. Proc Natl Acad Sci USA 111:8832–8837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liao W, Ning G (2006) Knockdown of apolipoprotein B, an atherogenic apolipoprotein, in HepG2 cells by lentivirus-mediated siRNA. Biochem Biophys Res Commun 344:478–483

    Article  CAS  PubMed  Google Scholar 

  44. Danielian PS, White R, Hoare SA, Fawell SE, Parker MG (1993) Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol Endocrinol 7:232–240

    CAS  PubMed  Google Scholar 

  45. Chen D, Kon N, Zhong J, Zhang P, Yu L, Gu W (2013) Differential effects on ARF stability by normal versus oncogenic levels of c-Myc expression. Mol Cell 51:46–56

    Article  PubMed  Google Scholar 

  46. Hoffman B, Liebermann DA (2008) Apoptotic signaling by c-MYC. Oncogene 27:6462–6472

    Article  CAS  PubMed  Google Scholar 

  47. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128

    Article  CAS  PubMed  Google Scholar 

  48. Hydbring P, Bahram F, Su Y, Tronnersjo S, Hogstrand K, von der Lehr N, Sharifi HR, Lilischkis R, Hein N, Wu S, Vervoorts J, Henrikssona M, Grandien A, Lüscher B, Larsson L (2010) Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci USA 107:58–63

    Article  CAS  PubMed  Google Scholar 

  49. Hydbring P, Larsson LG (2010) Tipping the balance: Cdk2 enables Myc to suppress senescence. Cancer Res 70:6687–6691

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Zhang B, Guo Y, Liang Q, Wu C, Wu L, Tao K, Wang G, Chen J (2012) Down-regulation of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human gastric cancer cells. PLoS ONE 7:e37096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu X, Guo W, Chen S, Xu Y, Li P, Wang H, Chu H, Li J, Du Y, Chen X, Zhang G, Zhao G (2016) Silencing of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human lung cancer cells. Oncol Lett 11:3735–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Philipp A, Schneider A, Väsrik I, Finke K, Xiong Y, Beach D, Alitalo K, Eilers M (1994) Repression of cyclin D1: a novel function of MYC. Mol Cell Biol 14:4032–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O’Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW (2000) Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 97:2229–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044

    Article  CAS  PubMed  Google Scholar 

  55. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451

    Article  CAS  PubMed  Google Scholar 

  56. Menssen A, Epanchintsev A, Lodygin D, Rezaei N, Jung P, Verdoodt B, Diebold J, Hermeking H (2007) c-MYC delays prometaphase by direct transactivation of MAD2 and BubR1: identification of mechanisms underlying c-MYC-induced DNA damage and chromosomal instability. Cell Cycle 6:339–352

    Article  CAS  PubMed  Google Scholar 

  57. Felsher DW, Bishop JM (1999) Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 96:3940–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jackstadt R, Hermeking H (2014) AP4 is required for mitogen- and c-MYC-induced cell cycle progression. OncoTarget 5:7316–7327

    Article  PubMed  PubMed Central  Google Scholar 

  59. Reisman D, Elkind NB, Roy B, Beamon J, Rotter V (1993) c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif. Cell Growth Differ 4:57–65

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Seed Grant from City University of Hong Kong (Project Number 7004028), the National Natural Science Foundation of China (No. 81703753), the Research Fund of Zhejiang Chinese Medicine University (No. 2017ZR05), and the NSERC Discovery Grant NSERC (RGPIN-2015-04144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Kay Chiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cheng, X., Samma, M.K. et al. Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells. Mol Cell Biochem 443, 193–204 (2018). https://doi.org/10.1007/s11010-017-3224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3224-5

Keywords

Navigation