Skip to main content

Advertisement

Log in

Effects of autophagy on acid-sensing ion channel 1a-mediated apoptosis in rat articular chondrocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a degenerative joint disease that is caused by multiple pathogenic factors. However, the precise etiology of RA is still unknown. Our previous studies demonstrated that acid-sensing ion channel 1a (ASIC1a)-mediated articular chondrocyte apoptosis played a key role in the progression of RA. In this study, we aim to explore whether ASIC1a mediates autophagy or not and the effect of autophagy on ASIC1a-mediated apoptosis. Primary articular chondrocytes, extracted from rat knee joints, were exposed to different concentrations of concentrated hydrochloric acid for different time intervals in vitro. The results indicated that extracellular acid treatment induced autophagy of rat articular chondrocytes. Moreover, inhibition of ASIC1a with either psalmotoxin 1 or ASIC1a short hairpin RNA reduced the autophagy flux. The results suggested that ASIC1a mediated acid-induced autophagy. Pretreatment with autophagy antagonist 3-methyladenine decreased the autophagy, but increased the apoptosis mediated by ASIC1a. Furthermore, knockdown of Beclin 1 by small interfering RNA attenuated autophagy but potentiated ASIC1a-mediated apoptosis of rat articular chondrocytes. Taken together, these findings suggested that both inhibition and silencing of autophagy could enhance ASIC1a-mediated apoptosis in rat articular chondrocytes, and therefore, autophagy is likely to be a new mechanism involved in ASIC1a-mediated apoptosis of articular chondrocytes during the pathogenesis of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pope RM (2002) Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat Rev Immunol 2:527–535. https://doi.org/10.1038/nri846

    Article  CAS  PubMed  Google Scholar 

  2. Zhou RP, Wu XS, Xie YY, Dai BB, Hu W, Ge JF, Chen FH (2016) Functions of interleukin-34 and its emerging association with rheumatoid arthritis. Immunology 149:362–373. https://doi.org/10.1111/imm.12660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Araki Y, Mimura T (2016) The mechanisms underlying chronic inflammation in rheumatoid arthritis from the perspective of the epigenetic landscape. J Immunol Res 2016:6290682. https://doi.org/10.1155/2016/6290682

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bialik S, Zalckvar E, Ber Y, Rubinstein AD, Kimchi A (2010) Systems biology analysis of programmed cell death. Trends Biochem Sci 35:556–564. https://doi.org/10.1016/j.tibs.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  5. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669. https://doi.org/10.1016/j.ceb.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  7. Nishida K, Yamaguchi O, Otsu K (2008) Crosstalk between autophagy and apoptosis in heart disease. Circ Res 103:343–351. https://doi.org/10.1161/CIRCRESAHA.108.175448

    Article  CAS  PubMed  Google Scholar 

  8. Huett A, Goel G, Xavier RJ (2010) A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol 26:302–309. https://doi.org/10.1097/MOG.0b013e32833ae2ed

    Article  PubMed  Google Scholar 

  9. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498. https://doi.org/10.1111/j.1365-2184.2012.00845.x

    Article  CAS  PubMed  Google Scholar 

  10. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752. https://doi.org/10.1038/nrm2239

    Article  CAS  PubMed  Google Scholar 

  12. Rockel JS, Kapoor M (2016) Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol 12:517–531. https://doi.org/10.1038/nrrheum.2016.92

    Article  CAS  PubMed  Google Scholar 

  13. Su X, Wang P, Yang S, Zhang K, Liu Q, Wang X (2015) Sonodynamic therapy induces the interplay between apoptosis and autophagy in K562 cells through ROS. Int J Biochem Cell Biol 60:82–92. https://doi.org/10.1016/j.biocel.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  14. Oral O, Akkoc Y, Bayraktar O, Gozuacik D (2016) Physiological and pathological significance of the molecular cross-talk between autophagy and apoptosis. Histol Histopathol 31:479–498. https://doi.org/10.14670/HH-11-714

    CAS  PubMed  Google Scholar 

  15. Liu D, Yang Y, Liu Q, Wang J (2011) Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Med Oncol 28:105–111. https://doi.org/10.1007/s12032-009-9397-3

    Article  PubMed  Google Scholar 

  16. Zhu X, Wu L, Qiao H, Han T, Chen S, Liu X, Jiang R, Wei Y, Feng D, Zhang Y, Ma Y, Zhang S, Zhang J (2013) Autophagy stimulates apoptosis in HER2-overexpressing breast cancers treated by lapatinib. J Cell Biochem 114:2643–2653. https://doi.org/10.1002/jcb.24611

    Article  CAS  PubMed  Google Scholar 

  17. Chang X, Yamada R, Yamamoto K (2005) Inhibition of antithrombin by hyaluronic acid may be involved in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 7:R268–R273. https://doi.org/10.1186/ar1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329. https://doi.org/10.1074/jbc.R700011200

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Fei J, Lei Z, Liu K, Wu J, Meng T, Yu J, Li J (2014) Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a. Toxicol Lett 228:200–206. https://doi.org/10.1016/j.toxlet.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  20. Leng T, Lin J, Cottrell JE, Xiong ZG (2013) Subunit and frequency-dependent inhibition of acid sensing ion channels by local anesthetic tetracaine. Mol Pain 9:27. https://doi.org/10.1186/1744-8069-9-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Wu FR, Xu RS, Hu W, Jiang DL, Ji C, Chen FH, Yuan FL (2014) Acid-sensing ion channel 1a-mediated calcium influx regulates apoptosis of endplate chondrocytes in intervertebral discs. Expert Opin Ther Targets 18:1–14. https://doi.org/10.1517/14728222.2014.859248

    Article  PubMed  Google Scholar 

  22. Yuan FL, Chen FH, Lu WG, Li X, Wu FR, Li JP, Li CW, Wang Y, Zhang TY, Hu W (2010) Acid-sensing ion channel 1a mediates acid-induced increases in intracellular calcium in rat articular chondrocytes. Mol Cell Biochem 340:153–159. https://doi.org/10.1007/s11010-010-0412-y

    Article  CAS  PubMed  Google Scholar 

  23. Zhou R, Wu X, Wang Z, Ge J, Chen F (2015) Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. Int Immunopharmacol 29:748–760. https://doi.org/10.1016/j.intimp.2015.08.044

    Article  CAS  PubMed  Google Scholar 

  24. Hu W, Chen FH, Yuan FL, Zhang TY, Wu FR, Rong C, Jiang S, Tang J, Zhang CC, Lin MY (2012) Blockade of acid-sensing ion channels protects articular chondrocytes from acid-induced apoptotic injury. Inflamm Res 61:327–335. https://doi.org/10.1007/s00011-011-0414-6

    Article  CAS  PubMed  Google Scholar 

  25. Rong C, Chen FH, Jiang S, Hu W, Wu FR, Chen TY, Yuan FL (2012) Inhibition of acid-sensing ion channels by amiloride protects rat articular chondrocytes from acid-induced apoptosis via a mitochondrial-mediated pathway. Cell Biol Int 36:635–641. https://doi.org/10.1042/CBI20110432

    Article  CAS  PubMed  Google Scholar 

  26. Yuan FL, Chen FH, Lu WG, Li X, Li JP, Li CW, Xu RS, Wu FR, Hu W, Zhang TY (2010) Inhibition of acid-sensing ion channels in articular chondrocytes by amiloride attenuates articular cartilage destruction in rats with adjuvant arthritis. Inflamm Res 59:939947. https://doi.org/10.1007/s00011-010-0206-4

    Article  Google Scholar 

  27. Choy E (2012) Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 51(Suppl 5):v3–v11. https://doi.org/10.1093/rheumatology/kes113

    Article  CAS  PubMed  Google Scholar 

  28. Fleischmann RM (2015) Rheumatoid arthritis: developing new oral targeted therapies for RA can be challenging. Nat Rev Rheumatol 11:4–6. https://doi.org/10.1038/nrrheum.2014.187

    Article  CAS  PubMed  Google Scholar 

  29. Koenders MI, van den Berg WB (2015) Novel therapeutic targets in rheumatoid arthritis. Trends Pharmacol Sci 36:189–195. https://doi.org/10.1016/j.tips.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Croker BA, Campbell IK, Gauci SJ, Alexander WS, Tonkin BA, Walsh NC, Linossi EM, Nicholson SE, Lawlor KE, Wicks IP (2014) Key role of suppressor of cytokine signaling 3 in regulating gp130 cytokine-induced signaling and limiting chondrocyte responses during murine inflammatory arthritis. Arthritis Rheumatol 66:2391–2402. https://doi.org/10.1002/art.38701

    Article  CAS  PubMed  Google Scholar 

  31. Mackay IR, Rowley MJ (2008) Collagen of articular cartilage: the neglected autoantigen of rheumatoid arthritis. J Rheumatol 35:731–733

    PubMed  Google Scholar 

  32. Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13:1–9. https://doi.org/10.1007/s10495-007-0154-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fisher DE (1994) Apoptosis in cancer therapy: crossing the threshold. Cell 78:539–542

    Article  CAS  PubMed  Google Scholar 

  34. Feng Y, Li B, Li XY, Wu ZB (2016) The role of autophagy in rheumatic disease. Curr Drug Targets

  35. Fujitani Y, Ueno T, Watada H (2010) Autophagy in health and disease. 4. The role of pancreatic beta-cell autophagy in health and diabetes. Am J Physiol Cell Physiol 299:C1–C6. https://doi.org/10.1152/ajpcell.00084.2010

    Article  CAS  PubMed  Google Scholar 

  36. Xu L, Fan Q, Wang X, Zhao X, Wang L (2016) Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells. Cell Death Dis 7:e2445. https://doi.org/10.1038/cddis.2016.322

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Q, Zeng P, Liu Y, Wen G, Fu X, Sun X (2015) Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis. Int Immunopharmacol 27:24–31. https://doi.org/10.1016/j.intimp.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  38. Shen C, Gu W, Cai GQ, Peng JP, Chen XD (2015) Autophagy protects meniscal cells from glucocorticoids-induced apoptosis via inositol trisphosphate receptor signaling. Apoptosis 20:1176–1186. https://doi.org/10.1007/s10495-015-1146-9

    Article  CAS  PubMed  Google Scholar 

  39. Huang ZM, Du SH, Huang LG, Li JH, Xiao L, Tong P (2016) Leptin promotes apoptosis and inhibits autophagy of chondrocytes through upregulating lysyl oxidase-like 3 during osteoarthritis pathogenesis. Osteoarthritis Cartil 24:1246–1253. https://doi.org/10.1016/j.joca.2016.02.009

    Article  CAS  Google Scholar 

  40. Shen C, Cai GQ, Peng JP, Chen XD (2015) Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling. Osteoarthritis Cartil 23:2279–2287. https://doi.org/10.1016/j.joca.2015.06.020

    Article  CAS  Google Scholar 

  41. Jeon H, Im GI (2016) Autophagy in osteoarthritis. Connect Tissue Res. https://doi.org/10.1080/03008207.2016.1240790

    PubMed  Google Scholar 

  42. Cheng NT, Guo A, Meng H (2016) The protective role of autophagy in experimental osteoarthritis, and the therapeutic effects of Torin 1 on osteoarthritis by activating autophagy. BMC Musculoskelet Disord 17:150. https://doi.org/10.1186/s12891-016-0995-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676. https://doi.org/10.1038/45257

    Article  CAS  PubMed  Google Scholar 

  44. Perez-Carrion MD, Perez-Martinez FC, Merino S, Sanchez-Verdu P, Martinez-Hernandez J, Lujan R, Cena V (2012) Dendrimer-mediated siRNA delivery knocks down Beclin 1 and potentiates NMDA-mediated toxicity in rat cortical neurons. J Neurochem 120:259–268. https://doi.org/10.1111/j.1471-4159.2011.07556.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 81271949, 30873080) and Anhui Provincial Natural Science Foundation (1408085MH151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-hu Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Ya-Ya Xie and Yue Li participated equally and should share “first authorship”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YY., Li, Y., Zhou, Rp. et al. Effects of autophagy on acid-sensing ion channel 1a-mediated apoptosis in rat articular chondrocytes. Mol Cell Biochem 443, 181–191 (2018). https://doi.org/10.1007/s11010-017-3223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3223-6

Keywords

Navigation