Molecular and Cellular Biochemistry

, Volume 443, Issue 1–2, pp 47–56 | Cite as

SOX2-mediated inhibition of miR-223 contributes to STIM1 activation in phenylephrine-induced hypertrophic cardiomyocytes

  • Zhi-Hong Zhao
  • Jun Luo
  • Hai-xia Li
  • Sai-hua Wang
  • Xin-ming Li


Stromal interaction molecule 1 (STIM1) is the key molecule responsible for store-operated Ca2+ entry (SOCE). Numerous studies have demonstrated that STIM1 levels appeared to be enhanced during cardiac hypertrophy. However, the mechanism underlining this process remains to be clarified. In this study, phenylephrine (PE) was employed to establish a model of hypertrophic neonatal rat cardiomyocytes (HNRCs) in vitro, and low expression of primary and mature miR-223 was detected in PE-induced HNRCs. Our results have revealed that downregulation of miR-223 by PE contributed to the increase of STIM1, which in turn induced cardiac hypertrophy. As expected, overexpression of miR-223 could prevent the increase in cell surface and reduce the mRNA levels of ANF and BNP in cardiomyocytes. To address the mechanism triggering downregulation of miR-223 under PE, we demonstrated that PE-induced inhibition of GSK-3β activity led to the activation of β-catenin, which initiates the transcription of SOX2. Increased expression of SOX2 occupied the promoter region of primary miR-223 and suppressed its transcription. Therefore, miR-223 appears to be a promising candidate for inhibiting cardiomyocyte hypertrophy, and miR-223/STIM1 axis might be one of interesting targets for the clinical treatment of hypertrophy.


SOX2 Hypertrophic cardiomyocytes miR-223 Stromal interaction molecule 1 



This study was supported by the Chinese Natural Science Foundation Grants (81303132), the Science and Technology Development Special Fund of Shanghai Health and Family Planning Commission (ZK2015A17), the Science and Technology Development Special Fund of Zhoupu Hospital (ZP2014A-01).

Compliance with ethical standards

Conflict of interest

All authors declare they have no conflicts of interest.

Supplementary material

11010_2017_3209_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)
11010_2017_3209_MOESM2_ESM.xlsx (24 kb)
Supplementary material 2 (XLSX 24 kb)
11010_2017_3209_MOESM3_ESM.pdf (921 kb)
Supplementary material 3 Supplementary Figure 1. miR-223 expression value in neonatal rat cardiomyocytes from 5-day TCA induction model (GEO/GSE38599). Supplementary Figure 2. Mature miR-223 expression level was examined by qPCR after infection of mir-223. (PDF 921 kb)


  1. 1.
    Bisping E, Wakula P, Poteser M, Heinzel FR (2014) Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 64:293–305. doi: 10.1097/FJC.0000000000000126 CrossRefPubMedGoogle Scholar
  2. 2.
    Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262. doi: 10.1016/j.yjmcc.2016.06.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Tojyo Y, Morita T, Nezu A, Tanimura A (2014) Key components of store-operated Ca2+ entry in non-excitable cells. J Pharmacol Sci 125:340–346CrossRefPubMedGoogle Scholar
  4. 4.
    Majewski L, Kuznicki J (2015) SOCE in neurons: signaling or just refilling? Biochim Biophys Acta 1853:1940–1952. doi: 10.1016/j.bbamcr.2015.01.019 CrossRefPubMedGoogle Scholar
  5. 5.
    Pan Z, Brotto M, Ma J (2014) Store-operated Ca2+ entry in muscle physiology and diseases. BMB Rep 47:69–79CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lopez JJ, Albarran L, Gomez LJ, Smani T, Salido GM, Rosado JA (2016) Molecular modulators of store-operated calcium entry. Biochim Biophys Acta 1863:2037–2043. doi: 10.1016/j.bbamcr.2016.04.024 CrossRefPubMedGoogle Scholar
  7. 7.
    Luo X, Hojayev B, Jiang N, Wang ZV, Tandan S, Rakalin A, Rothermel BA, Gillette TG, Hill JA (2012) STIM1-dependent store-operated Ca(2)(+) entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol 52:136–147. doi: 10.1016/j.yjmcc.2011.11.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Voelkers M, Salz M, Herzog N, Frank D, Dolatabadi N, Frey N, Gude N, Friedrich O, Koch WJ, Katus HA, Sussman MA, Most P (2010) Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J Mol Cell Cardiol 48:1329–1334. doi: 10.1016/j.yjmcc.2010.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ohba T, Watanabe H, Murakami M, Sato T, Ono K, Ito H (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem Biophys Res Commun 389:172–176. doi: 10.1016/j.bbrc.2009.08.117 CrossRefPubMedGoogle Scholar
  10. 10.
    Xue J, Chi Y, Chen Y, Huang S, Ye X, Niu J, Wang W, Pfeffer LM, Shao ZM, Wu ZH, Wu J (2016) MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene 35:448–458. doi: 10.1038/onc.2015.96 CrossRefPubMedGoogle Scholar
  11. 11.
    Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826CrossRefPubMedGoogle Scholar
  12. 12.
    Gladka MM, da Costa Martins PA, De Windt LJ (2012) Small changes can make a big difference—microRNA regulation of cardiac hypertrophy. J Mol Cell Cardiol 52:74–82. doi: 10.1016/j.yjmcc.2011.09.015 CrossRefPubMedGoogle Scholar
  13. 13.
    Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L, Thum T, Laggerbauer B, Engelhardt S (2013) MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127:2097–2106. doi: 10.1161/CIRCULATIONAHA.112.000882 CrossRefPubMedGoogle Scholar
  14. 14.
    Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618. doi: 10.1038/nm1582 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang K, Lin ZQ, Long B, Li JH, Zhou J, Li PF (2012) Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem 287:589–599. doi: 10.1074/jbc.M111.266940 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang W, Huang X, Xin HB, Fu M, Xue A, Wu ZH (2015) TRAF family member-associated NF-kappaB activator (TANK) inhibits genotoxic nuclear factor kappaB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J Biol Chem 290:13372–13385. doi: 10.1074/jbc.M115.643767 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Niu J, Xue A, Chi Y, Xue J, Wang W, Zhao Z, Fan M, Yang CH, Shao ZM, Pfeffer LM, Wu J, Wu ZH (2016) Induction of miRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene 35:1302–1313. doi: 10.1038/onc.2015.189 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao J, Cheng F, Wang Y, Arteaga CL, Zhao Z (2016) Systematic prioritization of druggable mutations in approximately 5000 genomes across 16 cancer types using a structural genomics-based approach. Mol Cell Proteomics 15:642–656. doi: 10.1074/mcp.M115.053199 CrossRefPubMedGoogle Scholar
  19. 19.
    Feng HJ, Ouyang W, Liu JH, Sun YG, Hu R, Huang LH, Xian JL, Jing CF, Zhou MJ (2014) Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz J Med Biol Res 47:361–368CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–287. doi: 10.1038/nrg1315 CrossRefPubMedGoogle Scholar
  21. 21.
    Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–461. doi: 10.1126/science.1199010 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Blankesteijn WM, van de Schans VA, ter Horst P, Smits JF (2008) The Wnt/frizzled/GSK-3 beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci 29:175–180. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  23. 23.
    Collins HE, Zhu-Mauldin X, Marchase RB, Chatham JC (2013) STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am J Physiol Heart Circ Physiol 305:H446–H458. doi: 10.1152/ajpheart.00104.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Putney JW (2013) Alternative forms of the store-operated calcium entry mediators, STIM1 and Orai1. Curr Top Membr 71:109–123. doi: 10.1016/B978-0-12-407870-3.00005-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Baba Y, Matsumoto M, Kurosaki T (2015) Signals controlling the development and activity of regulatory B-lineage cells. Int Immunol 27:487–493. doi: 10.1093/intimm/dxv027 CrossRefPubMedGoogle Scholar
  26. 26.
    Pozo-Guisado E, Martin-Romero FJ (2013) The regulation of STIM1 by phosphorylation. Commun Integr Biol 6:e26283. doi: 10.4161/cib.26283 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lang F, Eylenstein A, Shumilina E (2012) Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 52:347–354. doi: 10.1016/j.ceca.2012.05.005 CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao FY, Han J, Chen XW, Wang J, Wang XD, Sun JG, Chen ZT (2016) miR-223 enhances the sensitivity of non-small cell lung cancer cells to erlotinib by targeting the insulin-like growth factor-1 receptor. Int J Mol Med 38:183–191. doi: 10.3892/ijmm.2016.2588 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yang W, Lan X, Li D, Li T, Lu S (2015) MiR-223 targeting MAFB suppresses proliferation and migration of nasopharyngeal carcinoma cells. BMC Cancer 15:461. doi: 10.1186/s12885-015-1464-x CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aziz F (2016) The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell Immunol 303:1–6. doi: 10.1016/j.cellimm.2016.04.003 CrossRefPubMedGoogle Scholar
  31. 31.
    Taibi F, Metzinger-Le Meuth V, Massy ZA, Metzinger L (2014) miR-223: an inflammatory oncomiR enters the cardiovascular field. Biochim Biophys Acta 1842:1001–1009. doi: 10.1016/j.bbadis.2014.03.005 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang YS, Zhou J, Hong K, Cheng XS, Li YG (2015) MicroRNA-223 displays a protective role against cardiomyocyte hypertrophy by targeting cardiac troponin I-interacting kinase. Cell Physiol Biochem 35:1546–1556. doi: 10.1159/000373970 CrossRefPubMedGoogle Scholar
  33. 33.
    Yang L, Li Y, Wang X, Mu X, Qin D, Huang W, Alshahrani S, Nieman M, Peng J, Essandoh K, Peng T, Wang Y, Lorenz J, Soleimani M, Zhao ZQ, Fan GC (2016) Overexpression of miR-223 tips the balance of pro- and anti-hypertrophic signaling cascades toward physiologic cardiac hypertrophy. J Biol Chem 291:15700–15713. doi: 10.1074/jbc.M116.715805 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    ter Horst P, Smits JF, Blankesteijn WM (2012) The Wnt/Frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand? Acta Physiol (Oxf) 204:110–117. doi: 10.1111/j.1748-1716.2011.02309.x CrossRefGoogle Scholar
  35. 35.
    De Windt LJ, Lim HW, Haq S, Force T, Molkentin JD (2000) Calcineurin promotes protein kinase C and c-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J Biol Chem 275:13571–13579CrossRefPubMedGoogle Scholar
  36. 36.
    Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J (2000) The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275:14466–14475CrossRefPubMedGoogle Scholar
  37. 37.
    Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H, Force T (2003) Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci USA 100:4610–4615. doi: 10.1073/pnas.0835895100 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Feng R, Wen J (2015) Overview of the roles of Sox2 in stem cell and development. Biol Chem 396:883–891. doi: 10.1515/hsz-2014-0317 CrossRefPubMedGoogle Scholar
  39. 39.
    Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129:617–631. doi: 10.1016/j.cell.2007.02.048 CrossRefPubMedGoogle Scholar
  40. 40.
    Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831. doi: 10.1016/j.cell.2005.09.023 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Zhi-Hong Zhao
    • 1
  • Jun Luo
    • 1
  • Hai-xia Li
    • 2
  • Sai-hua Wang
    • 1
  • Xin-ming Li
    • 1
  1. 1.Department of Cardiology, Shanghai Pudong New Area Zhoupu HospitalShanghai University of Medicine & Health SciencesShanghaiPeople’s Republic of China
  2. 2.Department of Cardiology, Guang Anmen HospitalChina Academy of Chinese Medical SciencesBeijingPeople’s Republic of China

Personalised recommendations