Molecular and Cellular Biochemistry

, Volume 442, Issue 1–2, pp 59–72 | Cite as

Repetitive transcranial magnetic stimulation inhibits Sirt1/MAO-A signaling in the prefrontal cortex in a rat model of depression and cortex-derived astrocytes

  • Zheng-wu Peng
  • Fen Xue
  • Cui-hong Zhou
  • Rui-guo Zhang
  • Ying Wang
  • Ling Liu
  • Han-fei Sang
  • Hua-ning Wang
  • Qing-rong Tan


Repetitive transcranial magnetic stimulation (rTMS) is a useful monotherapy for depression or adjunctive therapy for resistant depression. However, the anti-depressive effects of different parameters and the underlying mechanisms remain unclear. Here, we aimed to assess the effect of rTMS with different parameters (1/5/10 Hz, 0.84/1.26 T) on the depressive-like behaviors, 5-hydroxytryptamine (5-HT), 5-HIAA (5-hydroxyindoleacetic acid) and DA and NE levels, and monoamine oxidase A (MAO-A) activity in chronic unpredictable stress-treated rats, along with the expression of sirtuin 1 (Sirt1) and MAO-A in the prefrontal cortex (PFC) and cortex-derived astrocytes from new-born rats. Moreover, the depressive-like behaviors were monitored following the transcranial injection of the Sirt1 inhibitor EX527 (1 mM) daily for 1 week. We found that rTMS treatment (5/10 Hz, 0.84/1.26 T) ameliorated depressive-like behaviors, increased 5-HT, DA and NE levels, decreased the 5-HIAA level and Sirt1 and MAO-A expression, and reduced MAO-A activity in the PFC. The depressive-like behaviors were also ameliorated after the transcranial injection of EX527. Importantly, rTMS (5/10 Hz, 0.84/1.26 T) inhibited Sirt1 and MAO-A expressions in astrocytes and Sirt1 knockdown with short hairpin RNA decreased MAO-A expression in astrocytes. These results suggest that the inhibition of Sirt1/MAO-A expression in astrocytes in the PFC may contribute to the different anti-depressive effects of rTMS with different parameters, and may also provide a novel insight into the mechanisms underlying major depressive disorder.


rTMS CUS Astrocytes Sirt1/MAO-A 



Repetitive transcranial magnetic stimulation


Repetitive magnetic stimulation


Chronic unpredictable stress


Major depressive disorder




5-Hydroxyindoleacetic acid


Sirtuin 1


Monoamine oxidase A


Monoamine oxidase B


Sucrose preference test


Forced swimming test


Open-field test






Prefrontal cortex



This work was supported by the National Natural Science Foundation (Grant Nos.: 81401109, 81401019, 81371478, 81571309, 81671343 and 81630032) of China. The funding sources had no role in the planning, conduct, or publication of this work.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no any conflict of interest in this study.

Supplementary material

11010_2017_3193_MOESM1_ESM.jpg (818 kb)
Supplementary material 1 (JPEG 818 kb)


  1. 1.
    Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442. doi: 10.1371/journal.pmed.0030442 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fava M (2003) The role of the serotonergic and noradrenergic neurotransmitter systems in the treatment of psychological and physical symptoms of depression. J Clin Psychiatry 64(Suppl 13):26–29PubMedGoogle Scholar
  3. 3.
    Nemeroff CB (2007) The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res 41:189–206. doi: 10.1016/j.jpsychires.2006.05.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Berlim MT, Turecki G (2007) Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can J Psychiatry 52:46–54CrossRefPubMedGoogle Scholar
  5. 5.
    Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039. doi: 10.1016/j.clinph.2009.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Slotema CW, Blom JD, Hoek HW, Sommer IE (2010) Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J Clin Psychiatry 71:873–884. doi: 10.4088/JCP.08m04872gre CrossRefPubMedGoogle Scholar
  7. 7.
    Burton C, Gill S, Clarke P, Galletly C (2014) Maintaining remission of depression with repetitive transcranial magnetic stimulation during pregnancy: a case report. Arch Womens Ment Health 17:247–250. doi: 10.1007/s00737-014-0418-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348:233–237CrossRefPubMedGoogle Scholar
  9. 9.
    McGirr A, Van den Eynde F, Tovar-Perdomo S, Fleck MP, Berlim MT (2015) Effectiveness and acceptability of accelerated repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant major depressive disorder: an open label trial. J Affect Disord 173:216–220. doi: 10.1016/j.jad.2014.10.068 CrossRefPubMedGoogle Scholar
  10. 10.
    Hadley D, Anderson BS, Borckardt JJ, Arana A, Li X, Nahas Z, George MS (2011) Safety, tolerability, and effectiveness of high doses of adjunctive daily left prefrontal repetitive transcranial magnetic stimulation for treatment-resistant depression in a clinical setting. J ECT 27:18–25. doi: 10.1097/YCT.0b013e3181ce1a8c CrossRefPubMedGoogle Scholar
  11. 11.
    Rossini D, Magri L, Lucca A, Giordani S, Smeraldi E, Zanardi R (2005) Does rTMS hasten the response to escitalopram, sertraline, or venlafaxine in patients with major depressive disorder? A double-blind, randomized, sham-controlled trial. J Clin Psychiatry 66:1569–1575CrossRefPubMedGoogle Scholar
  12. 12.
    Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E, Haynes JD, Rees G, Josephs O, Deichmann R, Driver J (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488. doi: 10.1016/j.cub.2006.06.057 CrossRefPubMedGoogle Scholar
  13. 13.
    Driver J, Blankenburg F, Bestmann S, Vanduffel W, Ruff CC (2009) Concurrent brain-stimulation and neuroimaging for studies of cognition. Trends Cogn Sci 13:319–327. doi: 10.1016/j.tics.2009.04.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206. doi: 10.1016/j.neuron.2004.12.033 CrossRefPubMedGoogle Scholar
  15. 15.
    Speer AM, Kimbrell TA, Wassermann EM, Repella JD, Willis MW, Herscovitch P, Post RM (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48:1133–1141CrossRefPubMedGoogle Scholar
  16. 16.
    Post A, Keck ME (2001) Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res 35:193–215CrossRefPubMedGoogle Scholar
  17. 17.
    Fitzgerald PB, Fountain S, Daskalakis ZJ (2006) A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117:2584–2596. doi: 10.1016/j.clinph.2006.06.712 CrossRefPubMedGoogle Scholar
  18. 18.
    Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, Bhalla K, Bai W (2007) SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 9:1253–1262. doi: 10.1038/ncb1645 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ramadori G, Fujikawa T, Anderson J, Berglund ED, Frazao R, Michan S, Vianna CR, Sinclair DA, Elias CF, Coppari R (2011) SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 14:301–312. doi: 10.1016/j.cmet.2011.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ferguson D, Shao N, Heller E, Feng J, Neve R, Kim HD, Call T, Magazu S, Shen L, Nestler EJ (2015) SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens. J Neurosci 35:3100–3111. doi: 10.1523/JNEUROSCI.4012-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109. doi: 10.1038/nature09271 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Michan S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, Mervis RF, Chen J, Guerin KI, Smith LE, McBurney MW, Sinclair DA, Baudry M, de Cabo R, Longo VD (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695–9707. doi: 10.1523/JNEUROSCI.0027-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Consortium C (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523:588–591. doi: 10.1038/nature14659 CrossRefGoogle Scholar
  24. 24.
    Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, Yamanouchi Y, Kinoshita Y, Kawashima K, Fukuo Y, Naitoh H, Umene-Nakano W, Inada T, Nakamura J, Ozaki N, Iwata N (2010) SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 126:167–173. doi: 10.1016/j.jad.2010.04.003 CrossRefPubMedGoogle Scholar
  25. 25.
    Kovanen L, Donner K, Partonen T (2015) SIRT1 polymorphisms associate with seasonal weight variation, depressive disorders, and diastolic blood pressure in the general population. PLoS ONE 10:e0141001. doi: 10.1371/journal.pone.0141001 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM, Kapur K, Bergmann S, Preisig M, Otowa T, Kendler KS, Chen X, Hettema JM, van den Oord EJ, Rubio JP, Guarente L (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147:1459–1472. doi: 10.1016/j.cell.2011.10.054 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST, Singewald N, Philippu A, Elbel GK, Wotjak CT, Holsboer F, Landgraf R, Engelmann M (2000) Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 12:3713–3720CrossRefPubMedGoogle Scholar
  28. 28.
    Baeken C, De Raedt R, Bossuyt A, Van Hove C, Mertens J, Dobbeleir A, Blanckaert P, Goethals I (2011) The impact of HF-rTMS treatment on serotonin (2A) receptors in unipolar melancholic depression. Brain Stimul 4:104–111. doi: 10.1016/j.brs.2010.09.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Wang HN, Wang L, Zhang RG, Chen YC, Liu L, Gao F, Nie H, Hou WG, Peng ZW, Tan Q (2014) Anti-depressive mechanism of repetitive transcranial magnetic stimulation in rat: the role of the endocannabinoid system. J Psychiatr Res 51:79–87. doi: 10.1016/j.jpsychires.2014.01.004 CrossRefPubMedGoogle Scholar
  30. 30.
    Wang HN, Bai YH, Chen YC, Zhang RG, Wang HH, Zhang YH, Gan JL, Peng ZW, Tan QR (2015) Repetitive transcranial magnetic stimulation ameliorates anxiety-like behavior and impaired sensorimotor gating in a rat model of post-traumatic stress disorder. PLoS ONE 10:e0117189. doi: 10.1371/journal.pone.0117189 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69:86–94. doi: 10.1016/j.brainresbull.2005.11.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Bambico FR, Nguyen NT, Gobbi G (2009) Decline in serotonergic firing activity and desensitization of 5-HT1A autoreceptors after chronic unpredictable stress. Eur Neuropsychopharmacol 19:215–228. doi: 10.1016/j.euroneuro.2008.11.005 CrossRefPubMedGoogle Scholar
  33. 33.
    Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105:751–756. doi: 10.1073/pnas.0708092105 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Slattery DA, Cryan JF (2012) Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 7:1009–1014. doi: 10.1038/nprot.2012.044 CrossRefPubMedGoogle Scholar
  35. 35.
    Zhu H, Chen MF, Yu WJ, Wang WJ, Li F, Liu WC, Wo Y, Xia R, Ding WL (2012) Time-dependent changes in BDNF expression of pentylenetetrazole-induced hippocampal astrocytes in vitro. Brain Res 1439:1–6. doi: 10.1016/j.brainres.2011.12.035 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang R, Peng Z, Wang H, Xue F, Chen Y, Wang Y, Wang H, Tan Q (2014) Gastrodin ameliorates depressive-like behaviors and up-regulates the expression of BDNF in the hippocampus and hippocampal-derived astrocyte of rats. Neurochem Res 39:172–179. doi: 10.1007/s11064-013-1203-0 CrossRefPubMedGoogle Scholar
  37. 37.
    Lee SA, Oh BM, Kim SJ, Paik NJ (2014) The molecular evidence of neural plasticity induced by cerebellar repetitive transcranial magnetic stimulation in the rat brain: a preliminary report. Neurosci Lett 575:47–52. doi: 10.1016/j.neulet.2014.05.029 CrossRefPubMedGoogle Scholar
  38. 38.
    Takano B, Drzezga A, Peller M, Sax I, Schwaiger M, Lee L, Siebner HR (2004) Short-term modulation of regional excitability and blood flow in human motor cortex following rapid-rate transcranial magnetic stimulation. Neuroimage 23:849–859. doi: 10.1016/j.neuroimage.2004.06.032 CrossRefPubMedGoogle Scholar
  39. 39.
    Loo CK, Sachdev PS, Haindl W, Wen W, Mitchell PB, Croker VM, Malhi GS (2003) High (15 Hz) and low (1 Hz) frequency transcranial magnetic stimulation have different acute effects on regional cerebral blood flow in depressed patients. Psychol Med 33:997–1006CrossRefPubMedGoogle Scholar
  40. 40.
    Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, Wassermann EM, Repella JD, Danielson AL, Willis MW, Benson BE, Speer AM, Osuch E, George MS, Post RM (1999) Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry 46:1603–1613CrossRefPubMedGoogle Scholar
  41. 41.
    Speer AM, Benson BE, Kimbrell TK, Wassermann EM, Willis MW, Herscovitch P, Post RM (2009) Opposite effects of high and low frequency rTMS on mood in depressed patients: relationship to baseline cerebral activity on PET. J Affect Disord 115:386–394. doi: 10.1016/j.jad.2008.10.006 CrossRefPubMedGoogle Scholar
  42. 42.
    Berlim MT, McGirr A, Beaulieu MM, Turecki G (2011) High frequency repetitive transcranial magnetic stimulation as an augmenting strategy in severe treatment-resistant major depression: a prospective 4-week naturalistic trial. J Affect Disord 130:312–317. doi: 10.1016/j.jad.2010.10.011 CrossRefPubMedGoogle Scholar
  43. 43.
    George MS, Raman R, Benedek DM, Pelic CG, Grammer GG, Stokes KT, Schmidt M, Spiegel C, Dealmeida N, Beaver KL, Borckardt JJ, Sun X, Jain S, Stein MB (2014) A two-site pilot randomized 3 day trial of high dose left prefrontal repetitive transcranial magnetic stimulation (rTMS) for suicidal inpatients. Brain Stimul 7:421–431. doi: 10.1016/j.brs.2014.03.006 CrossRefPubMedGoogle Scholar
  44. 44.
    Brunelin J, Jalenques I, Trojak B, Attal J, Szekely D, Gay A, Januel D, Haffen E, Schott-Pethelaz AM, Brault C, Group S, Poulet E (2014) The efficacy and safety of low frequency repetitive transcranial magnetic stimulation for treatment-resistant depression: the results from a large multicenter French RCT. Brain Stimul 7:855–863. doi: 10.1016/j.brs.2014.07.040 CrossRefPubMedGoogle Scholar
  45. 45.
    Bares M, Kopecek M, Novak T, Stopkova P, Sos P, Kozeny J, Brunovsky M, Hoschl C (2009) Low frequency (1-Hz), right prefrontal repetitive transcranial magnetic stimulation (rTMS) compared with venlafaxine ER in the treatment of resistant depression: a double-blind, single-centre, randomized study. J Affect Disord 118:94–100. doi: 10.1016/j.jad.2009.01.032 CrossRefPubMedGoogle Scholar
  46. 46.
    Dell’Osso B, Oldani L, Camuri G, Dobrea C, Cremaschi L, Benatti B, Arici C, Grancini B, Altamura AC (2015) Augmentative repetitive Transcranial Magnetic Stimulation (rTMS) in the acute treatment of poor responder depressed patients: a comparison study between high and low frequency stimulation. Eur Psychiatry 30:271–276. doi: 10.1016/j.eurpsy.2014.12.001 CrossRefPubMedGoogle Scholar
  47. 47.
    Hesselberg ML, Wegener G, Buchholtz PE (2016) Antidepressant efficacy of high and low frequency transcranial magnetic stimulation in the FSL/FRL genetic rat model of depression. Behav Brain Res 314:45–51. doi: 10.1016/j.bbr.2016.07.037 CrossRefPubMedGoogle Scholar
  48. 48.
    Grehl S, Viola HM, Fuller-Carter PI, Carter KW, Dunlop SA, Hool LC, Sherrard RM, Rodger J (2015) Cellular and molecular changes to cortical neurons following low intensity repetitive magnetic stimulation at different frequencies. Brain Stimul 8:114–123. doi: 10.1016/j.brs.2014.09.012 CrossRefPubMedGoogle Scholar
  49. 49.
    Ueyama E, Ukai S, Ogawa A, Yamamoto M, Kawaguchi S, Ishii R, Shinosaki K (2011) Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci 65:77–81. doi: 10.1111/j.1440-1819.2010.02170.x CrossRefPubMedGoogle Scholar
  50. 50.
    Galletly C, Gill S, Clarke P, Burton C, Fitzgerald PB (2012) A randomized trial comparing repetitive transcranial magnetic stimulation given 3 days/week and 5 days/week for the treatment of major depression: is efficacy related to the duration of treatment or the number of treatments? Psychol Med 42:981–988. doi: 10.1017/S0033291711001760 CrossRefPubMedGoogle Scholar
  51. 51.
    Couturier JL (2005) Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression: a systematic review and meta-analysis. J Psychiatry Neurosci 30:83–90PubMedPubMedCentralGoogle Scholar
  52. 52.
    Herrmann LL, Ebmeier KP (2006) Factors modifying the efficacy of transcranial magnetic stimulation in the treatment of depression: a review. J Clin Psychiatry 67:1870–1876CrossRefPubMedGoogle Scholar
  53. 53.
    Sapolsky RM (2004) Is impaired neurogenesis relevant to the affective symptoms of depression? Biol Psychiatry 56:137–139. doi: 10.1016/j.biopsych.2004.04.012 CrossRefPubMedGoogle Scholar
  54. 54.
    Martin-Subero M, Anderson G, Kanchanatawan B, Berk M, Maes M (2016) Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways. CNS Spectr 21:184–198. doi: 10.1017/S1092852915000449 CrossRefPubMedGoogle Scholar
  55. 55.
    Song C, Wang H (2011) Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 35:760–768. doi: 10.1016/j.pnpbp.2010.06.020 CrossRefPubMedGoogle Scholar
  56. 56.
    Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, Hu XP, Miller AH (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry 21:1351–1357. doi: 10.1038/mp.2015.206 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34. doi: 10.1038/nri.2015.5 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127. doi: 10.1016/j.biopsych.2006.02.013 CrossRefPubMedGoogle Scholar
  59. 59.
    Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21. doi: 10.1016/j.coph.2006.08.009 CrossRefPubMedGoogle Scholar
  60. 60.
    Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118. doi: 10.1007/s00429-008-0189-x CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 45:54–63. doi: 10.1016/j.pnpbp.2013.04.009 CrossRefPubMedGoogle Scholar
  62. 62.
    Lim LW, Janssen ML, Kocabicak E, Temel Y (2015) The antidepressant effects of ventromedial prefrontal cortex stimulation is associated with neural activation in the medial part of the subthalamic nucleus. Behav Brain Res 279:17–21. doi: 10.1016/j.bbr.2014.11.008 CrossRefPubMedGoogle Scholar
  63. 63.
    Amat J, Dolzani SD, Tilden S, Christianson JP, Kubala KH, Bartholomay K, Sperr K, Ciancio N, Watkins LR, Maier SF (2016) Previous ketamine produces an enduring blockade of neurochemical and behavioral effects of uncontrollable stress. J Neurosci 36:153–161. doi: 10.1523/JNEUROSCI.3114-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pham TH, Mendez-David I, Defaix C, Guiard BP, Tritschler L, David DJ, Gardier AM (2017) Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology 112:198–209. doi: 10.1016/j.neuropharm.2016.05.010 CrossRefPubMedGoogle Scholar
  65. 65.
    Sacher J, Rekkas PV, Wilson AA, Houle S, Romano L, Hamidi J, Rusjan P, Fan I, Stewart DE, Meyer JH (2015) Relationship of monoamine oxidase-A distribution volume to postpartum depression and postpartum crying. Neuropsychopharmacology 40:429–435. doi: 10.1038/npp.2014.190 CrossRefPubMedGoogle Scholar
  66. 66.
    Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151. doi: 10.1038/nrn1846 CrossRefPubMedGoogle Scholar
  67. 67.
    Wong ML, Licinio J (2004) From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 3:136–151. doi: 10.1038/nrd1303 CrossRefPubMedGoogle Scholar
  68. 68.
    Finberg JP (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143:133–152. doi: 10.1016/j.pharmthera.2014.02.010 CrossRefPubMedGoogle Scholar
  69. 69.
    Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309. doi: 10.1038/nrn1883 CrossRefPubMedGoogle Scholar
  70. 70.
    Lam RW, Kennedy SH, Parikh SV, MacQueen GM, Milev RV, Ravindran AV, Group CDW, Canadian Network for Mood and Anxiety Treatments (CANMAT) (2016) Clinical guidelines for the management of adults with major depressive disorder: introduction and methods. Can J Psychiatry 61:506–509. doi: 10.1177/0706743716659061 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kaludercic N, Carpi A, Menabo R, Di Lisa F, Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813:1323–1332. doi: 10.1016/j.bbamcr.2010.09.010 CrossRefPubMedGoogle Scholar
  72. 72.
    Youdim MB, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296. doi: 10.1038/sj.bjp.0706464 PubMedPubMedCentralGoogle Scholar
  73. 73.
    Ou XM, Stockmeier CA, Meltzer HY, Overholser JC, Jurjus GJ, Dieter L, Chen K, Lu D, Johnson C, Youdim MB, Austin MC, Luo J, Sawa A, May W, Shih JC (2010) A novel role for glyceraldehyde-3-phosphate dehydrogenase and monoamine oxidase B cascade in ethanol-induced cellular damage. Biol Psychiatry 67:855–863. doi: 10.1016/j.biopsych.2009.10.032 CrossRefPubMedGoogle Scholar
  74. 74.
    Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, Young T, Praschak-Rieder N, Wilson AA, Houle S (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63:1209–1216. doi: 10.1001/archpsyc.63.11.1209 CrossRefPubMedGoogle Scholar
  75. 75.
    Sacher J, Wilson AA, Houle S, Rusjan P, Hassan S, Bloomfield PM, Stewart DE, Meyer JH (2010) Elevated brain monoamine oxidase A binding in the early postpartum period. Arch Gen Psychiatry 67:468–474. doi: 10.1001/archgenpsychiatry.2010.32 CrossRefPubMedGoogle Scholar
  76. 76.
    Chen K, Ou XM, Wu JB, Shih JC (2011) Transcription factor E2F-associated phosphoprotein (EAPP), RAM2/CDCA7L/JPO2 (R1), and simian virus 40 promoter factor 1 (Sp1) cooperatively regulate glucocorticoid activation of monoamine oxidase B. Mol Pharmacol 79:308–317. doi: 10.1124/mol.110.067439 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Grunewald M, Johnson S, Lu D, Wang Z, Lomberk G, Albert PR, Stockmeier CA, Meyer JH, Urrutia R, Miczek KA, Austin MC, Wang J, Paul IA, Woolverton WL, Seo S, Sittman DB, Ou XM (2012) Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J Biol Chem 287:24195–24206. doi: 10.1074/jbc.M112.373936 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Fitzgerald JC, Ugun-Klusek A, Allen G, De Girolamo LA, Hargreaves I, Ufer C, Abramov AY, Billett EE (2014) Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins. FASEB J 28:218–229. doi: 10.1096/fj.13-235481 CrossRefPubMedGoogle Scholar
  79. 79.
    Tao Q, Fan X, Li T, Tang Y, Yang D, Le W (2012) Gender segregation in gene expression and vulnerability to oxidative stress induced injury in ventral mesencephalic cultures of dopamine neurons. J Neurosci Res 90:167–178. doi: 10.1002/jnr.22729 CrossRefPubMedGoogle Scholar
  80. 80.
    Raitsin S, Tong J, Kish S, Xu X, Magomedova L, Cummins C, Andreazza AC, Scola G, Baker G, Meyer JH (2017) Subchronic glucocorticoids, glutathione depletion and a postpartum model elevate monoamine oxidase a activity in the prefrontal cortex of rats. Brain Res 1666:1–10. doi: 10.1016/j.brainres.2017.03.032 CrossRefPubMedGoogle Scholar
  81. 81.
    Chaudhuri AD, Yelamanchili SV, Fox HS (2013) MicroRNA-142 reduces monoamine oxidase A expression and activity in neuronal cells by downregulating SIRT1. PLoS ONE 8:e79579. doi: 10.1371/journal.pone.0079579 CrossRefPubMedGoogle Scholar
  82. 82.
    Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238. doi: 10.1038/nrm3293 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ma J, Zhang Z, Su Y, Kang L, Geng D, Wang Y, Luan F, Wang M, Cui H (2013) Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons. Neurochem Int 62:84–91. doi: 10.1016/j.neuint.2012.11.010 CrossRefPubMedGoogle Scholar
  84. 84.
    Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. doi: 10.1016/j.cmet.2011.08.016 CrossRefPubMedGoogle Scholar
  85. 85.
    Escartin C, Valette J, Lebon V, Bonvento G (2006) Neuron-astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. J Neurochem 99:393–401. doi: 10.1111/j.1471-4159.2006.04083.x CrossRefPubMedGoogle Scholar
  86. 86.
    DiNuzzo M (2016) Astrocyte-neuron interactions during learning may occur by lactate signaling rather than metabolism. Front Integr Neurosci 10:2. doi: 10.3389/fnint.2016.00002 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Magistretti PJ (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90:875S–880S. doi: 10.3945/ajcn.2009.27462CC CrossRefPubMedGoogle Scholar
  88. 88.
    McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358. doi: 10.1002/jnr.21444 CrossRefPubMedGoogle Scholar
  89. 89.
    McKenna MC, Ferreira GC (2016) Enzyme complexes important for the glutamate–glutamine cycle. Adv Neurobiol 13:59–98. doi: 10.1007/978-3-319-45096-4_4 CrossRefPubMedGoogle Scholar
  90. 90.
    Riederer P, Konradi C, Schay V, Kienzl E, Birkmayer G, Danielczyk W, Sofic E, Youdim MB (1987) Localization of MAO-A and MAO-B in human brain: a step in understanding the therapeutic action of L-deprenyl. Adv Neurol 45:111–118PubMedGoogle Scholar
  91. 91.
    Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR, Schlyer DJ, Zezulkova I, Wolf AP (1996) Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci USA 93:14065–14069CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Vaarmann A, Gandhi S, Abramov AY (2010) Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 285:25018–25023. doi: 10.1074/jbc.M110.111450 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Liu L, Zhang Q, Cai Y, Sun D, He X, Wang L, Yu D, Li X, Xiong X, Xu H, Yang Q, Fan X (2016) Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget. doi: 10.18632/oncotarget.11178 Google Scholar
  94. 94.
    Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, Kobayashi A, Watanabe Y (2016) Hippocampal sirtuin 1 signaling mediates depression-like behavior. Biol Psychiatry. doi: 10.1016/j.biopsych.2016.01.009 PubMedGoogle Scholar
  95. 95.
    Kim HD, Hesterman J, Call T, Magazu S, Keeley E, Armenta K, Kronman H, Neve RL, Nestler EJ, Ferguson D (2016) SIRT1 mediates depression-like behaviors in the nucleus accumbens. J Neurosci 36:8441–8452. doi: 10.1523/JNEUROSCI.0212-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chang HC, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153:1448–1460. doi: 10.1016/j.cell.2013.05.027 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Zheng-wu Peng
    • 1
  • Fen Xue
    • 1
  • Cui-hong Zhou
    • 1
  • Rui-guo Zhang
    • 1
  • Ying Wang
    • 1
  • Ling Liu
    • 2
  • Han-fei Sang
    • 3
  • Hua-ning Wang
    • 1
  • Qing-rong Tan
    • 1
  1. 1.Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi’anChina
  2. 2.Institute of NeuroscienceFourth Military Medical UniversityXi’anChina
  3. 3.Department of Anesthesiology, Xijing HospitalFourth Military Medical UniversityXi’anChina

Personalised recommendations