Molecular and Cellular Biochemistry

, Volume 442, Issue 1–2, pp 39–45 | Cite as

A novel resveratrol derivative selectively inhibits the proliferation of colorectal cancer cells with KRAS mutation

  • Haruna Okamoto
  • Taiji Matsukawa
  • Satoshi Doi
  • Toshiyuki Tsunoda
  • Yuuga Sawata
  • Madoka Naemura
  • Koichiro Ohnuki
  • Senji Shirasawa
  • Yojiro Kotake
Article
  • 177 Downloads

Abstract

Resveratrol is a polyphenolic compound in many edible foods including grapes, peanuts, and berries. Several studies have revealed the beneficial effects of resveratrol against various diseases such as heart disease, diabetes, obesity, neurological disorders, and cancer. A recent study showed that resveratrol inhibits the proliferation of HCT116 human colorectal cancer cells in three-dimensional culture (3DC) via induction of luminal apoptosis in HCT116 cell spheroids. In this study, we showed that a novel compound, caffeic acid-adducted resveratrol, has a stronger inhibitory effect on the growth of HCT116 cell spheroids in 3DC than resveratrol. It showed almost the same inhibitory efficacy as 5-fluorouracil, a conventional anticancer drug. We further showed that the resveratrol derivative did not affect the growth of HKe3 cell spheroids derived from HCT116 cells by disruption of the activating mutant KRAS gene. These results suggest that the resveratrol derivative inhibits the growth of HCT116 cell spheroids via inhibition of an oncogenic KRAS-mediated signaling pathway.

Keywords

Resveratrol Colorectal cancer Three-dimensional culture KRAS Oncogene 

Notes

Acknowledgements

We thank Keishi Tamura, Hiroaki Fukushima, Ayaka Oki, and Taishi Nawata for technical assistance and our laboratory members for helpful discussions. This work was supported by JSPS KAKENHI Grant Number 17K07184 (to YK) and the Naito Foundation (to YK).

Compliance with ethical standards

Disclosure

The resveratrol derivative (UHA6052) used in this study was provided by UHA Mikakuto Co., Ltd. Taiji Matsukawa and Satoshi Doi are employees of UHA Mikakuto Co., Ltd.

References

  1. 1.
    Mukherjee S, Dudley JI, Das DK (2010) Dose-dependency of resveratrol in providing health benefits. Dose Response 8:478–500. doi: 10.2203/dose-response.09-015.Mukherjee CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16:449–466. doi: 10.1016/j.jnutbio.2005.01.017 CrossRefPubMedGoogle Scholar
  3. 3.
    Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, Maciag A, Puca AA, Vecchione C (2013) Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol 61:215–226. doi: 10.1016/j.fct.2013.07.021 CrossRefPubMedGoogle Scholar
  4. 4.
    Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220CrossRefPubMedGoogle Scholar
  5. 5.
    Fouad MA, Agha AM, Merzabani MM, Shouman SA (2013) Resveratrol inhibits proliferation, angiogenesis and induces apoptosis in colon cancer cells: calorie restriction is the force to the cytotoxicity. Hum Exp Toxicol 32:1067–1080. doi: 10.1177/0960327113475679 CrossRefPubMedGoogle Scholar
  6. 6.
    Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21:R209–R225. doi: 10.1530/ERC-13-0171 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112CrossRefPubMedGoogle Scholar
  8. 8.
    Mnjoyan ZH, Fujise K (2003) Profound negative regulatory effects by resveratrol on vascular smooth muscle cells: a role of p53-p21(WAF1/CIP1) pathway. Biochem Biophys Res Commun 311:546–552CrossRefPubMedGoogle Scholar
  9. 9.
    Hsieh TC, Juan G, Darzynkiewicz Z, Wu JM (1999) Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21(WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2. Cancer Res 59:2596–2601PubMedGoogle Scholar
  10. 10.
    Narayanan BA, Narayanan NK, Re GG, Nixon DW (2003) Differential expression of genes induced by resveratrol in LNCaP cells: p53-mediated molecular targets. Int J Cancer 104:204–212. doi: 10.1002/ijc.10932 CrossRefPubMedGoogle Scholar
  11. 11.
    Fulda S, Debatin KM (2004) Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene 23:6702–6711. doi: 10.1038/sj.onc.1207630 CrossRefPubMedGoogle Scholar
  12. 12.
    McDonald SA, Preston SL, Lovell MJ, Wright NA, Jankowski JA (2006) Mechanisms of disease: from stem cells to colorectal cancer. Nat Clin Pract Gastroenterol Hepatol 3:267–274. doi: 10.1038/ncpgasthep0473 CrossRefPubMedGoogle Scholar
  13. 13.
    Tsunoda T, Takashima Y, Fujimoto T, Koyanagi M, Yoshida Y, Doi K, Tanaka Y, Kuroki M, Sasazuki T, Shirasawa S (2010) Three-dimensionally specific inhibition of DNA repair-related genes by activated KRAS in colon crypt model. Neoplasia 12:397–404CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shirasawa S, Furuse M, Yokoyama N, Sasazuki T (1993) Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260:85–88CrossRefPubMedGoogle Scholar
  15. 15.
    Tsunoda T, Ota T, Fujimoto T, Doi K, Tanaka Y, Yoshida Y, Ogawa M, Matsuzaki H, Hamabashiri M, Tyson DR, Kuroki M, Miyamoto S, Shirasawa S (2012) Inhibition of phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model. Mol Cancer 11:46. doi: 10.1186/1476-4598-11-46 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308. doi: 10.1038/nrc2109 CrossRefPubMedGoogle Scholar
  17. 17.
    Tsunoda T, Ishikura S, Doi K, Matsuzaki H, Iwaihara Y, Shirasawa S (2014) Resveratrol induces luminal apoptosis of human colorectal cancer HCT116 cells in three-dimensional culture. Anticancer Res 34:4551–4555PubMedGoogle Scholar
  18. 18.
    Tsunoda T, Ishikura S, Doi K, Iwaihara Y, Hidesima H, Luo H, Hirose Y, Shirasawa S (2015) Establishment of a three-dimensional floating cell culture system for screening drugs targeting KRAS-mediated signaling molecules. Anticancer Res 35:4453–4459PubMedGoogle Scholar
  19. 19.
    Kishi A, Shinka Y, Matsukawa T, Yamada Y, Yamada I (2016) A novel resveratrol derivative. Japan Patent 2016-30739Google Scholar
  20. 20.
    Mikula-Pietrasik J, Sosinska P, Murias M, Wierzchowski M, Brewinska-Olchowik M, Piwocka K, Szpurek D, Ksiazek K (2015) High potency of a novel resveratrol derivative, 3,3′,4,4′-tetrahydroxy-trans-stilbene, against ovarian cancer is associated with an oxidative stress-mediated imbalance between DNA damage accumulation and repair. Oxid Med Cell Longev 2015:135691. doi: 10.1155/2015/135691 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hata Y, Etoh T, Inomata M, Shiraishi N, Nishizono A, Kitano S (2008) Efficacy of oncolytic reovirus against human breast cancer cells. Oncol Rep 19:1395–1398PubMedGoogle Scholar
  22. 22.
    Rosendahl AH, Perks CM, Zeng L, Markkula A, Simonsson M, Rose C, Ingvar C, Holly JM, Jernstrom H (2015) Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin Cancer Res 21:1877–1887. doi: 10.1158/1078-0432.CCR-14-1748 CrossRefPubMedGoogle Scholar
  23. 23.
    Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433. doi: 10.1016/j.cell.2012.01.017 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Haruna Okamoto
    • 1
  • Taiji Matsukawa
    • 3
  • Satoshi Doi
    • 3
  • Toshiyuki Tsunoda
    • 4
    • 5
  • Yuuga Sawata
    • 1
  • Madoka Naemura
    • 1
  • Koichiro Ohnuki
    • 1
    • 2
  • Senji Shirasawa
    • 4
    • 5
  • Yojiro Kotake
    • 1
    • 2
  1. 1.Graduate School of Humanity-Oriented Science and EngineeringKindai UniversityIizukaJapan
  2. 2.Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and EngineeringKindai UniversityIizukaJapan
  3. 3.Technology Development SectionUHA Mikakuto Co., LtdChuo-kuJapan
  4. 4.Department of Cell Biology, Faculty of MedicineFukuoka UniversityJonan-kuJapan
  5. 5.Central Research Institute for Advanced Molecular MedicineFukuoka UniversityJonan-kuJapan

Personalised recommendations