Skip to main content
Log in

Antiapoptotic effects of caspase inhibitors on H2O2-treated lung cancer cells concerning oxidative stress and GSH

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Exogenous hydrogen peroxide (H2O2) induces oxidative stress and apoptosis in cancer cells. This study evaluated the antiapoptotic effects of pan-caspase and caspase-3, -8, or -9 inhibitors on H2O2-treated Calu-6 and A549 lung cancer cells in relation to reactive oxygen species (ROS) and glutathione (GSH). Treatment with 50–500 μM H2O2 inhibited the growth of Calu-6 and A549 cells at 24 h and induced apoptosis in these cells. All the tested caspase inhibitors significantly prevented cell death in H2O2-treated lung cancer cells. H2O2 increased intracellular ROS levels, including that of O ·−2 , at 1 and 24 h. It also increased the activity of catalase but decreased the activity of SOD. In addition, H2O2 triggered GSH deletion in Calu-6 and A549 cells at 24 h. It reduced GSH levels in Calu-6 cells at 1 h but increased them at 24 h. Caspase inhibitors decreased O ·−2 levels in H2O2-treated Calu-6 cells at 1 h and these inhibitors decreased ROS levels, including that of O ·−2 , in H2O2-treated A549 cells at 24 h. Caspase inhibitors partially attenuated GSH depletion in H2O2-treated A549 cells and increased GSH levels in these cells at 24 h. However, the inhibitors did not affect GSH deletion and levels in Calu-6 cells at 24 h. In conclusion, H2O2 induced caspase-dependent apoptosis in Calu-6 and A549 cells, which was accompanied by increases in ROS and GSH depletion. The antiapoptotic effects of caspase inhibitors were somewhat related to the suppression of H2O2-induced oxidative stress and GSH depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

H2O2 :

Hydrogen peroxide

ROS:

Reactive oxygen species

GSH:

Glutathione

Z-VAD-FMK:

Benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

Z-DEVD-FMK:

Benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone

Z-IETD-FMK:

Benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone

Z-LEHD-FMK:

Benzyloxycarbonyl-Leu-Glu-His-Asp-fluoromethylketone

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

SOD:

Superoxide dismutase

H2DCFDA:

2′,7′-Dichlorodihydrofluorescein diacetate

DHE:

Dihydroethidium

CMFDA:

5-Chloromethylfluorescein diacetate

References

  1. Gonzalez C, Sanz-Alfayate G, Agapito MT, Gomez-Nino A, Rocher A, Obeso A (2002) Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol 132:17–41

    Article  CAS  PubMed  Google Scholar 

  2. Baran CP, Zeigler MM, Tridandapani S, Marsh CB (2004) The role of ROS and RNS in regulating life and death of blood monocytes. Curr Pharm Des 10:855–866

    Article  CAS  PubMed  Google Scholar 

  3. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    Article  CAS  PubMed  Google Scholar 

  4. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  CAS  PubMed  Google Scholar 

  5. Wilcox CS (2002) Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypertens Rep 4:160–166

    Article  PubMed  Google Scholar 

  6. Blaser H, Dostert C, Mak TW, Brenner D (2016) TNF and ROS crosstalk in inflammation. Trends Cell Biol 26:249–261. doi:10.1016/j.tcb.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  CAS  PubMed  Google Scholar 

  9. Mehmet H (2000) Caspases find a new place to hide. Nature 403:29–30

    Article  CAS  PubMed  Google Scholar 

  10. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  11. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189. doi:10.1016/j.ceb.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  12. Vilhardt F, van Deurs B (2004) The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J 23:739–748. doi:10.1038/sj.emboj.7600066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180:1340–1355. doi:10.1016/j.ajpath.2012.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han YH, Kim SZ, Kim SH, Park WH (2009) Pyrogallol inhibits the growth of lung cancer Calu-6 cells via caspase-dependent apoptosis. Chem Biol Interact 177:107–114. doi:10.1016/j.cbi.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  15. Park WH, Seol JG, Kim ES, Hyun JM, Jung CW, Lee CC, Kim BK, Lee YY (2000) Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res 60:3065–3071

    CAS  PubMed  Google Scholar 

  16. Park WH (2014) Anti-apoptotic effect of caspase inhibitors on H(2)O(2)-treated HeLa cells through early suppression of its oxidative stress. Oncol Rep 31:2413–2421. doi:10.3892/or.2014.3084

    Article  CAS  PubMed  Google Scholar 

  17. Han YH, Park WH (2010) The effects of MAPK inhibitors on a proteasome inhibitor, MG132-induced HeLa cell death in relation to reactive oxygen species and glutathione. Toxicol Lett 192:134–140. doi:10.1016/j.toxlet.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  18. Han YH, Moon HJ, You BR, Park WH (2010) The effects of MAPK inhibitors on pyrogallol-treated Calu-6 lung cancer cells in relation to cell growth, reactive oxygen species and glutathione. Food Chem Toxicol 48:271–276. doi:10.1016/j.fct.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  19. Han YH, Kim SZ, Kim SH, Park WH (2008) Enhancement of arsenic trioxide-induced apoptosis in HeLa cells by diethyldithiocarbamate or buthionine sulfoximine. Int J Oncol 33:205–213

    CAS  PubMed  Google Scholar 

  20. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181

    Article  CAS  PubMed  Google Scholar 

  21. Han YH, Kim SZ, Kim SH, Park WH (2008) Suppression of arsenic trioxide-induced apoptosis in HeLa cells by N-acetylcysteine. Mol Cells 26:18–25

    PubMed  Google Scholar 

  22. Han YH, Kim SH, Kim SZ, Park WH (2009) Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) as an O2(*-) generator induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells. Lung Cancer 63:201–209. doi:10.1016/j.lungcan.2008.05.005

    Article  PubMed  Google Scholar 

  23. Han YH, Kim SZ, Kim SH, Park WH (2008) Intracellular GSH level is a factor in As4.1 juxtaglomerular cell death by arsenic trioxide. J Cell Biochem 104:995–1009. doi:10.1002/jcb.21685

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP; No 2016R1A2B4007773) and supported by “Research Base Construction Fund Support Program” funded by Chonbuk National University in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Hyun Park.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, W.H. Antiapoptotic effects of caspase inhibitors on H2O2-treated lung cancer cells concerning oxidative stress and GSH. Mol Cell Biochem 441, 125–134 (2018). https://doi.org/10.1007/s11010-017-3179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3179-6

Keywords

Navigation