Skip to main content
Log in

Histamine 2 receptor antagonism elicits protection against doxorubicin-induced cardiotoxicity in rodent model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX), an anthracycline-based antibiotic, is regularly used in the management of carcinomas, and haematological malignancies have been downplayed in chemotherapy because of its ability to induce dilated cardiomyopathy (DCM). Dexrazoxane is approved to combat the cardiotoxicity, but limited by its adverse effects. Redox imbalance and reactive oxygen species generation plays major role in DOX-induced cardiotoxicity. Histamine, known to mediate various cardiovascular effects, but nevertheless the role of histamine or its receptors in DOX-induced DCM is remained obscure. Hence, this study is aimed to examine the effect of Famotidine (FAM), a H2 receptor antagonist on DOX-induced DCM in Wistar rats. Myocardial antioxidant status, stress and apoptosis markers, myocardial morphology and function were evaluated as the end points. Treatment with FAM has alleviated DOX doxorubicin-induced cardiotoxicity by reducing oxidative and nitrosative stress evident from lipid peroxidation and total nitrate-to-nitrite ratio, and enhanced the activity of super oxide dismutase. Cardiac stress markers like LDH and Na+-K+ATPase activities as well as CK-MB and Cardiac troponin levels were reduced by FAM treatment. It also normalised the myocardial function as assessed by 2D echocardiography and myocardial index. Treatment imparted anti-apoptotic effect as evident from decrease in myocardial caspase 3 and 9 activity and cleaved PARP expression. Effect of FAM is found to be comparable to the standard ACE inhibitor Captopril (CAP). The results from this study collectively suggest H2 receptor antagonism as a novel therapeutic strategy to impart biochemical, structural and functional improvement indicating its cardio-protective activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shakir DK, Rasul KI (2009) Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management. J Clin Med Res 1:8–12. doi:10.4021/jocmr2009.02.1225

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Biancaniello T, Meyer RA, Wong KY et al (1980) Doxorubicin cardiotoxicity in children. J Pediatr 97:45–50. doi:10.1016/S0022-3476(80)80128-4

    Article  CAS  PubMed  Google Scholar 

  3. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905. doi:10.1056/NEJM199809243391307

    Article  CAS  PubMed  Google Scholar 

  4. Octavia Y, Tocchetti CG, Gabrielson KL et al (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52:1213–1225. doi:10.1016/j.yjmcc.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  5. Richard C, Ghibu S, Delemasure-Chalumeau S et al (2011) Oxidative stress and myocardial gene alterations associated with doxorubicin-induced cardiotoxicity in rats persist for 2 months after treatment cessation. J Pharmacol Exp Ther 339:807–814. doi:10.1124/jpet.111.185892

    Article  CAS  PubMed  Google Scholar 

  6. Gilleron M, Marechal X, Montaigne D et al (2009) NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis. Biochem Biophys Res Commun 388:727–731. doi:10.1016/j.bbrc.2009.08.085

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y, McLaughlin D, Robinson E et al (2010) Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with doxorubicin chemotherapy. Cancer Res 70:9287–9297. doi:10.1158/0008-5472.CAN-10-2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma J, Wang Y, Zheng D et al (2013) Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovasc Res 97:77–87. doi:10.1093/cvr/cvs309

    Article  CAS  PubMed  Google Scholar 

  9. van Acker SA, Kramer K, Grimbergen JA et al (1995) Monohydroxyethylrutoside as protector against chronic doxorubicin-induced cardiotoxicity. Br J Pharmacol 115:1260–1264

    Article  PubMed  PubMed Central  Google Scholar 

  10. Decorti G, Klugmann FB, Candussio L, Baldini L (1989) Interaction of adriamycin with rat and mouse mast cells: histamine release and cellular uptake. Agents Actions 27:49–51

    Article  CAS  PubMed  Google Scholar 

  11. Dvorak AM (1986) Mast-cell degranulation in human hearts. N Engl J Med 315:969–970

    CAS  PubMed  Google Scholar 

  12. Hara M, Ono K, Hwang M-W et al (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Del Valle J, Gantz I (1997) Novel insights into histamine H2 receptor biology. Am J Physiol 273:G987–G996

    PubMed  Google Scholar 

  14. Potnuri AG, Allakonda L, Appavoo A et al (2016) Targeting histamine-2 receptor for prevention of cardiac remodelling in chronic pressure overload. Int J Cardiol 202:831–833. doi:10.1016/j.ijcard.2015.10.040

    Article  PubMed  Google Scholar 

  15. Luo T, Chen B, Zhao Z et al (2013) Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function. Basic Res Cardiol 108:342. doi:10.1007/s00395-013-0342-4

    Article  PubMed  Google Scholar 

  16. Johnson CL, Weinstein H, Green JP (1979) Studies on histamine H2 receptors coupled to cardiac adenylate cyclase. Blockade by H2 and H1 receptor antagonists. Mol Pharmacol 16:417–428

    CAS  PubMed  Google Scholar 

  17. Ahmadi A, Ebrahimzadeh MA, Ahmad-Ashrafi S et al (2011) Hepatoprotective, antinociceptive and antioxidant activities of cimetidine, ranitidine and famotidine as histamine H2 receptor antagonists. Fundam Clin Pharmacol 25:72–79. doi:10.1111/j.1472-8206.2009.00810.x

    Article  CAS  PubMed  Google Scholar 

  18. Pradeepkumar Singh L, Kundu P, Ganguly K et al (2007) Novel role of famotidine in downregulation of matrix metalloproteinase-9 during protection of ethanol-induced acute gastric ulcer. Free Radic Biol Med 43:289–299. doi:10.1016/j.freeradbiomed.2007.04.027

    Article  PubMed  Google Scholar 

  19. Khilnani G, Khilnani AK (2011) Inverse agonism and its therapeutic significance. Indian J Pharmacol 43:492–501. doi:10.4103/0253-7613.84947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayward R, Hydock DS (2007) Doxorubicin cardiotoxicity in the rat: an in vivo characterization. J Am Assoc Lab Anim Sci 46:20–32

    CAS  PubMed  Google Scholar 

  21. Hou X-W, Jiang Y, Wang L-F et al (2009) Protective role of granulocyte colony-stimulating factor against adriamycin induced cardiac, renal and hepatic toxicities. Toxicol Lett 187:40–44. doi:10.1016/j.toxlet.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  22. Mansour MA, El-Kashef HA, Al-Shabanah OA (1999) Effect of captopril on doxorubicin-induced nephrotoxicity in normal rats. Pharmacol Res Off J Ital Pharmacol Soc 39:233–237. doi:10.1006/phrs.1998.0432

    CAS  Google Scholar 

  23. Al-Shabanah O, Mansour M, El-Kashef H, Al-Bekairi A (1998) Captopril ameliorates myocardial and hematological toxicities induced by adriamycin. IUBMB Life 45:419–427. doi:10.1080/15216549800202802

    Article  CAS  Google Scholar 

  24. Escudero EM, de Hurtado MCC, Pérez NG, Tufare AL (2004) Echocardiographic assessment of left ventricular midwall mechanics in spontaneously hypertensive rats. Eur Heart J Cardiovasc Imaging 5:169–175. doi:10.1016/j.euje.2003.11.004

    Google Scholar 

  25. Annapurna A, Challa SR, Prakash GJ, Viswanath RK (2008) Therapeutic potential of sulindac against ischemia-reperfusion-induced myocardial infarction in diabetic and nondiabetic rats. Exp Clin Cardiol 13:66–70

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Potnuri AG, Kondru SK, Samudrala PK, Allakonda L (2017) Prevention of adriamycin induced cardiotoxicity in rats: a comparative study with subacute angiotensin-converting enzyme inhibitor and nonselective beta blocker therapy. IJC Metab Endocr 14:59–64. doi:10.1016/j.ijcme.2017.01.001

    Article  Google Scholar 

  27. Fraga CG, Leibovitz BE, Tappel AL (1988) Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4:155–161. doi:10.1016/0891-5849(88)90023-8

    Article  CAS  PubMed  Google Scholar 

  28. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 5:62–71. doi:10.1006/niox.2000.0319

    Article  CAS  Google Scholar 

  29. Håkanson R, Rönnberg A (1974) Improved fluorometric assay of histamine: condensation with O-phthalaldehyde at −20 °C. Anal Biochem 60:560–567. doi:10.1016/0003-2697(74)90267-X

    Article  PubMed  Google Scholar 

  30. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  31. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  32. Kaushal V, Herzog C, Haun RS, Kaushal GP (2014) Caspase protocols in mice. Methods Mol Biol Clifton NJ 1133:141–154. doi:10.1007/978-1-4939-0357-3_9

    Article  CAS  Google Scholar 

  33. Sawamura I, Hazama F, Kinoshita M (1990) Histological and histometrical study of myocardial fibrosis in spontaneously hypertensive rats of the stroke-prone strain. Jpn Circ J 54:1274–1282

    Article  CAS  PubMed  Google Scholar 

  34. Wang XQ, Xiao AY, Sheline C et al (2003) Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 116:2099–2110. doi:10.1242/jcs.00420

    Article  CAS  PubMed  Google Scholar 

  35. Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121:151–157

    Article  CAS  PubMed  Google Scholar 

  36. Clements IP, Davis BJ, Wiseman GA (2002) Systolic and diastolic cardiac dysfunction early after the initiation of doxorubicin therapy: significance of gender and concurrent mediastinal radiation. Nucl Med Commun 23:521–527

    Article  CAS  PubMed  Google Scholar 

  37. Seif AE, Walker DM, Li Y et al (2015) Dexrazoxane exposure and risk of secondary acute myeloid leukemia in pediatric oncology patients. Pediatr Blood Cancer 62:704–709. doi:10.1002/pbc.25043

    Article  CAS  PubMed  Google Scholar 

  38. Biscotte SM, Levick SP, Bertling ML et al (2007) Angiotensin II mediated activation of cardiac mast cells. FASEB J 21:A1253–A1253

    Google Scholar 

  39. Reid AC, Brazin JA, Morrey C et al (2011) Targeting cardiac mast cells: pharmacological modulation of the local renin-angiotensin system. Curr Pharm Des 17:3744–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sia YT, Lapointe N, Parker TG et al (2002) Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 105:2549–2555

    Article  CAS  PubMed  Google Scholar 

  41. Berthiaume JM, Oliveira PJ, Fariss MW, Wallace KB (2005) Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol 5:257–267

    Article  CAS  PubMed  Google Scholar 

  42. Chakraborty H, Sen P, Sur A et al (2003) Age-related oxidative inactivation of Na+, K+-ATPase in rat brain crude synaptosomes. Exp Gerontol 38:705–710

    Article  CAS  PubMed  Google Scholar 

  43. Solomonson LP, Halabrin PR (1981) Cardiac sodium, potassium-adenosine triphosphatase as a possible site of adriamycin-induced cardiotoxicity. Cancer Res 41:570–572

    CAS  PubMed  Google Scholar 

  44. Wu AHB (2006) Cardiac troponin friend of the cardiac physician, foe to the cardiac patient? Circulation 114:1673–1675. doi:10.1161/CIRCULATIONAHA.106.652123

    Article  PubMed  Google Scholar 

  45. Herman EH, Zhang J, Lipshultz SE et al (1999) Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J Clin Oncol Off J Am Soc Clin Oncol 17:2237–2243

    Article  CAS  Google Scholar 

  46. Mair J, Apple F (1997) Progress in myocardial damage detection: new biochemical markers for clinicians. Crit Rev Clin Lab Sci 34:1–66. doi:10.3109/10408369709038215

    Article  CAS  PubMed  Google Scholar 

  47. Sato Y, Kita T, Takatsu Y, Kimura T (2004) Biochemical markers of myocyte injury in heart failure. Heart 90:1110–1113. doi:10.1136/hrt.2003.023895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Smith SH, Kramer MF, Reis I et al (1990) Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy. Circ Res 67:1334–1344. doi:10.1161/01.RES.67.6.1334

    Article  CAS  PubMed  Google Scholar 

  49. Forman DE, Cittadini A, Azhar G et al (1997) Cardiac morphology and function in senescent rats: gender-related differences. J Am Coll Cardiol 30:1872–1877. doi:10.1016/S0735-1097(97)00411-7

    Article  CAS  PubMed  Google Scholar 

  50. Hutter JJ, Sahn DJ, Woolfenden JM, Carnahan Y (1981) Evaluation of the cardiac effects of doxorubicin by serial echocardiography. Am J Dis Child 135:653–657

    PubMed  Google Scholar 

  51. Al-Biltagi M, Abd Rab Elrasoul Tolba O, El-Shanshory MR et al (2012) Strain echocardiography in early detection of doxorubicin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. Int Sch Res Not 2012:e870549. doi:10.5402/2012/870549

    Google Scholar 

  52. Zhao W, Zhao T, Chen Y et al (2008) Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem 317:43–50. doi:10.1007/s11010-008-9803-8

    Article  CAS  PubMed  Google Scholar 

  53. Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603. doi:10.1161/01.CIR.0000096580.26969.9A

    Article  PubMed  Google Scholar 

  54. Ramani GV, Uber PA, Mehra MR (2010) Chronic heart failure: contemporary diagnosis and management. Mayo Clin Proc 85:180–195. doi:10.4065/mcp.2009.0494

    Article  PubMed  PubMed Central  Google Scholar 

  55. Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189. doi:10.1056/NEJM199610173351603

    Article  CAS  PubMed  Google Scholar 

  56. Hong BK, Kwon HM, Byun KH et al (2000) Apoptosis in dilated cardiomyopathy. Korean J Intern Med 15:56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanchez-Quintana D, Climent V, Garcia-Martinez V et al (1994) Extracellular matrix arrangement in the papillary muscles of the adult rat heart. Alterations after doxorubicin administration and experimental hypertension. Basic Res Cardiol 89:279–292

    CAS  PubMed  Google Scholar 

  58. Xie M, Zhang W, Cheng TO et al (2013) Left ventricular torsion abnormalities in patients after the arterial switch operation for transposition of the great arteries with intact ventricular septum. Int J Cardiol 168:4631–4637. doi:10.1016/j.ijcard.2013.07.194

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the management of Sri Vishnu College of Pharmacy and Department of Cardiology, Andhra Medical College, Visakhapatnam for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Godwin Potnuri.

Ethics declarations

Conflict of interest

The authors also disclose no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondru, S.K., Potnuri, A.G., Allakonda, L. et al. Histamine 2 receptor antagonism elicits protection against doxorubicin-induced cardiotoxicity in rodent model. Mol Cell Biochem 441, 77–88 (2018). https://doi.org/10.1007/s11010-017-3175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3175-x

Keywords

Navigation