Phenotypic and genotypic characterization of antioxidant enzyme system in human population exposed to radiation from mobile towers

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present era, cellular phones have changed the life style of human beings completely and have become an essential part of their lives. The number of cell phones and cell towers are increasing in spite of their disadvantages. These cell towers transmit radiation continuously without any interruption, so people living within 100s of meters from the tower receive 10,000 to 10,000,000 times stronger signal than required for mobile communication. In the present study, we have examined superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, lipid peroxidation assay, and effect of functional polymorphism of SOD and CAT antioxidant genes against mobile tower-induced oxidative stress in human population. From our results, we have found a significantly lower mean value of manganese superoxide dismutase (MnSOD) enzyme activity, catalase (CAT) enzyme activity, and a high value of lipid peroxidation assay in exposed as compared to control subjects. Polymorphisms in antioxidant MnSOD and CAT genes significantly contributed to its phenotype. In the current study, a significant association of genetic polymorphism of antioxidant genes with genetic damage has been observed in human population exposed to radiations emitted from mobile towers.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Blank M, Goodman R (2011) DNA is a fractal antenna in electromagnetic fields. Int J Radiat Biol 87(4):409–415

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Burlaka A, Tsybulin O, Sidorik E, Lukin S, Polishuk V, Tsehmistrenko S, Yakymenko I (2013) Overproduction of free radical species in embryonal cells exposed to low intensity radiofrequency radiation. Exp Oncol 35(3):219–225

    CAS  PubMed  Google Scholar 

  3. 3.

    Desai N, Kesari KK, Agarwal A (2009) Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bandyopadhyay U, Das D, Banerjee RK (2000) Reactive oxygen species: oxidative and pathogenesis. Current Sci 77:658–666

    Google Scholar 

  5. 5.

    De Iuliis GN, Newey RJ, King BV, Aitken RJ (2009) Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE 4:6446

    Article  Google Scholar 

  6. 6.

    Kesari KK, Siddiqui MH, Meena R, Verma HN, Kumar S (2013) Cell phone radiation exposure on brain and associated biological systems. Indian J Exp Biol 51:187–200

    CAS  PubMed  Google Scholar 

  7. 7.

    Furtado-Filho OV, Borba JB, Dallegrave A, Pizzolato TM, Henriques JA, Moreira JC, Saffi J (2013) Effect of 950 MHz UHF electromagnetic radiation on biomarkers of oxidative damage, metabolism of UFA and antioxidants in the livers of young rats of different ages. Int J Radiat Biol 119(2):159–168

    Google Scholar 

  8. 8.

    Powell CL, Swenberg JA, Rusyn I (2005) Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage. Cancer Lett 229:1–11

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Sikka SC (1999) Testicular toxicology in endocrine and hormonal toxicology. In: Harvey P, Cock Burn A (eds). Chap 5, Wiley, West Sussex, pp 91–110

  11. 11.

    Morabito F, Cristani M, Saija A, Stelitano C, Callea V, Tomaino A, Minciullo PL, Gangemi S (2004) Lipid peroxidation and protein oxidation in patients affected by Hodgkin’s lymphoma. Mediat Inflamm 13:381–383

    CAS  Article  Google Scholar 

  12. 12.

    Seljeskog E, Hervig T, Mansoor MA (2006) A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS): a comparison with a commercially available kit. Clin Biochem 39:947–954

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Guler G, Tomruk A, Ozgur E, Seyhan N (2010) The effect of radiofrequency radiation on DNA and lipid damage in non-pregnant and pregnant rabbits and their newborns. Gen Physiol Biophys 29:59–66

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the cuzn-sod (sod1), mn-sod (sod2), and ec-sod (sod3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Salvatore C, Adriana MS, Giuseppe MC, Angela D, Angela A, Maria C, Carlo S, Amalia L, Antonino S, Alberto C (2005) Extracellular superoxide dismutase (EC SOD) gene mutations screening in a sample of Mediterranean population. Mutation Res 578(12):143–148

    Google Scholar 

  16. 16.

    Warner DS, Sheng H, Batinic-Haberle I (2004) Oxidants, antioxidants and the ischemic brain. J Exp Biol 207:3221–3231

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11(6):851–876

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Al-Abrash ASA, Al-Quobaili FA, Al-Akhras GN (2000) Catalase evaluation in different human diseases associated with oxidative stress. Saud Med J 21(9):826–830

    CAS  Google Scholar 

  19. 19.

    Goth L, Lenkey A, Bigler WN (2001) Blood catalase deficiency and diabetes in Hungary. Diabetes Care 24(10):1839–1840

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ambrosone CB, Ahn J, Singh KK et al (2005) Polymorphisms in genes related to oxidative stress (MPO, MnSOD, CAT) and survival after treatment for breast cancer. Cancer Res 65(3):1105–1111

    CAS  PubMed  Google Scholar 

  21. 21.

    Ahn J, Nowell S, McCann SE et al (2006) Associations between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemiol Biomark Prev 15(6):1217–1222

    CAS  Article  Google Scholar 

  22. 22.

    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Beauge JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  Google Scholar 

  25. 25.

    Rahman SH, Nanny C, Ibrahim K, O’Reilly D, Larvin M, Kingsnorth AJ, McMahon MJ (2005) Genetic polymorphisms of GSTT1, GSTM1, GSTP1, MnSOD, and catalase in nonhereditary chronic pancreatitis: evidence of xenobiotic stress and impaired antioxidant capacity. Dig Dis Sci 50(7):376–1383

    Article  Google Scholar 

  26. 26.

    Gulati S, Yadav A, Kumar N, Priya K, Aggarwal NK, Kumar R, Gupta R (2015) Effect of GSTM1 and GSTT1 polymorphisms on genetic damage in humans populations exposed to radiation from mobile towers. Arch Environ Contam Toxicol 69(2):1–11

    Google Scholar 

  27. 27.

    Wolf R, Wolf D (2007) Increased incidence of cancer near a cellphone transmitted station. In: Columbus F (ed) Trends in cancer prevention. Nova Science Publishers, New York, pp 1–8

    Google Scholar 

  28. 28.

    Kumar S, Kesari KK, Behari J (2011) The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45 GHz microwave field. Clinics 66(7):1237–1245

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Paulraj R, Behari J (2006) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Res 596:76–80

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kumar S, Kesari KK, Behari J (2011) Influence of microwave exposure on fertility of male rats. Fertil Steril 95(4):1500–1502

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J (2008) Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril 89(1):124–128

    Article  PubMed  Google Scholar 

  32. 32.

    Fejes I, Zavaczki Z, Szollosi J, Koloszar S, Daru J, Kovacs L et al (2005) Is there a relationship between cell phone use and semen quality? Arch Androl 51:385–393

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kesari KK, Behari J (2009) Fifty gigahertz microwave exposure effect of radiation on rat brain. Appl Biochem Biotech 158:126–139

    CAS  Article  Google Scholar 

  34. 34.

    Kesari KK, Kumar S, Behari J (2010) Mobile phone use and male infertility in Wistar rats. Indian J Exp Biol 47:987–992

    Google Scholar 

  35. 35.

    Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E (2005) Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin. Arch Med Res 36:350–355

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Santini R, Santini P, Danze JM, Le Ruz P, Seigne M (2002) Study of the health of people living in the vicinity of mobile phone base stations: incidence according to distance and sex. Pathol Biol 50(6):369–373

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Liubimova NE, Vorobtsova IE (2007) The effect of age and low dose irradiation on the chromosomal aberration frequency in human lymphocytes. Radiat Biol Radioecol 47(1):80–85

    CAS  Google Scholar 

  38. 38.

    Huang X, Halicka H, Traganos F, Tanaka T, Kurose A, Darzynkiewicz Z (2005) Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis. Cell Prolif 38:223–243

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Maes A, Gorp VU, Verschaeve L (2006) Cytogenetic investigation of subjects professionally exposed to radiofrequency radiation. Mutagenesis 21:139–142

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Bishop JB, Witt KL, Sloane RA (1997) Genetic toxicities of human teratogens. Mutation Res 396:9–43

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Maluf SW, Erdtmann B (2000) Evaluation of occupational risk in a Brazilian hospital. Genet Mol Biol 23:485–488

    CAS  Article  Google Scholar 

  42. 42.

    Dittberner U, Schmetzer B, Golzer P, Eisenbrand G, Zankl H (1997) Genotoxic effects of 2-trans-hexenal in human buccal mucosa cells in vivo. Mutation Res 390:161–165

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Behrendt L, Jonsson ME, Goldstone JV, Stegeman JJ (2010) Induction of cytochrome P450 1 genes and stress response genes in developing zebrafish exposed to ultraviolet radiation. Aquat Toxicol 98(1):74–82

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Carlsten C, Sagoo GS, Frodsham AJ, Burke W, Higgins JPT (2008) Glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol 167(7):759–774

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Hiyama T, Yoshihara M, Tanaka S, Chayama K (2008) Genetic polymorphisms and head and neck cancer risk (Review). Int J Oncol 32:945–973

    CAS  PubMed  Google Scholar 

  46. 46.

    Shi X, Zhou S, Wang Z et al (2007) CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer 59(2):155–163

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Science and Engineering Research Board, Department of Science and Technology (DST), New Delhi, India for funding through Grant No. SR/FT/LS-146/2011 and to all blood donors for their voluntary participation in our study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjan Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research protocol was approved by the institutional human ethics committee of Kurukshetra University, Kurukshetra (Haryana).

Informed consent

Informed consent was obtained from all subjects.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulati, S., Yadav, A., Kumar, N. et al. Phenotypic and genotypic characterization of antioxidant enzyme system in human population exposed to radiation from mobile towers. Mol Cell Biochem 440, 1–9 (2018). https://doi.org/10.1007/s11010-017-3150-6

Download citation

Keywords

  • Antioxidant gene polymorphism
  • Electromagnetic fields (EMFs)
  • Mobile tower base stations
  • Oxidative stress
  • Reactive oxygen species