Skip to main content

Advertisement

Log in

Knockdown of eukaryotic translation initiation factor 3 subunit D (eIF3D) inhibits proliferation of acute myeloid leukemia cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Various eukaryotic translation initiation factors (eIFs) have been implicated in carcinoma development. Eukaryotic translation initiation factor 3 subunit D (eIF3D) has recently been shown to regulate the growth of several types of human cancer cells. However, the function of eIF3D in acute myeloid leukemia (AML) remains unclear. In this study, we investigated the expression of eIF3D in three AML cell lines and a lymphoblast cell line, and found that eIF3D was expressed in all four leukemia cell lines. To explore the role of eIF3D in AML cell proliferation, lentivirus-mediated RNA interference was applied to knock down the expression of eIF3D in U937 cells. The expression of eIF3D was significantly downregulated in U937 cells after eIF3D knockdown, as confirmed by quantitative real-time PCR (qRT-PCR) and Western blot analysis. Knockdown of eIF3D significantly inhibited proliferation of U937 cells. Furthermore, flow cytometry analysis revealed that eIF3D silencing induced cell cycle arrest at the G2/M phase, ultimately leading to apoptosis. Our results indicate that eIF3D plays a key role in the proliferation of AML cells, and suggest that eIF3D silencing might be a potential therapeutic strategy for leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

eIF:

Eukaryotic translation initiation factor

eIF3D:

Eukaryotic translation initiation factor 3 subunit D

qRT-PCR:

Quantitative real-time PCR

AML:

Acute myeloid leukemia

DMEM:

Dulbecco’s Modified Eagle Medium

shRNA:

Short hairpin RNA

CMV:

Cytomegalovirus

GFP:

Green fluorescent protein

MOI:

Multiplicity of infection

TBST:

Tris-buffered saline with 0.1% Tween-20

SAPK:

Stress-activated protein kinase

JNK:

c-Jun N-terminal kinase

7-AAD:

7-aminoactinomycin D

ECL:

Enhanced chemiluminescence

MTT:

Methylthiazol tetrazolium

Lv-sheIF3D:

sheIF3D lentivirus

Lv-shCon:

Empty vector lentivirus

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Ries LAG, Smith MA, Gumey JG, et al (1999) Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. NIH Pub. No. 99-4649. Bethesda, MD

  3. Garcia-Manero G (2012) Can we improve outcomes in patients with acute myelogenous leukemia? Incorporating HDAC inhibitors into front-line therapy. Best Pract Res Clin Haematol 25(4):427–435

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara F, Schiffer CA (2013) Acute myeloid leukaemia in adults. Lancet 381(9865):484–495

    Article  PubMed  Google Scholar 

  5. Silvera D, Formenti SC, Schneider RJ et al (2010) Translational control in cancer. Nat Rev Cancer 10(4):254–266

    Article  CAS  PubMed  Google Scholar 

  6. Pandolfi PP (2004) Aberrant mRNA translation in cancer pathogenesis: an old concept revisited comes finally of age. Oncogene 23(18):3134–3137

  7. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valasek LS (2012) ‘Ribozoomin’–translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci 13(4):305–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinnebusch AG (2006) eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31(10):553–562

  10. Peterson TR, Sabatini DM (2005) eIF3: a connecTOR of S6K1 to the translation preinitiation complex. Mol Cell 20(5):655–657

    Article  CAS  PubMed  Google Scholar 

  11. Lee AS, Kranzusch PJ, Cate JH (2015) eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature 522(7554):111–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee AS, Kranzusch PJ, Doudna JA et al (2016) eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 536(7614):96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spilka R, Ernst C, Mehta AK et al (2013) Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 340(1):9–21

    Article  CAS  PubMed  Google Scholar 

  14. Kim HK, Choi IJ, Kim CG et al (2011) A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS One 6(2):e16694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sudo H, Tsuji AB, Sugyo A et al (2010) Knockdown of COPA, identified by loss-of-function screen, induces apoptosis and suppresses tumor growth in mesothelioma mouse model. Genomics 95(4):210–216

    Article  CAS  PubMed  Google Scholar 

  16. Yu X, Zheng B, Chai R et al (2014) Lentivirus-mediated knockdown of eukaryotic translation initiation factor 3 subunit D inhibits proliferation of HCT116 colon cancer cells. Biosci Rep 34(6):e00161

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin Z, Xiong L, Lin Q et al (2015) Knockdown of eIF3d inhibits cell proliferation through G2/M phase arrest in non-small cell lung cancer. Med Oncol 32(7):1–8

    Article  Google Scholar 

  18. Zhang J, Wu Q, Wang Z et al (2015) Knockdown of PSF1 expression inhibits cell proliferation in lung cancer cells in vitro. Tumour Biol 36(3):2163–2168

    Article  CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Zhou F, Wang H et al (2015) Knockdown of EIF3D suppresses proliferation of human melanoma cells through G2/M phase arrest. Biotechnol Appl Biochem 62(5):615–620

    Article  CAS  PubMed  Google Scholar 

  21. Récher C, Beyne-Rauzy O, Demur C et al (2005) Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105(6):2527–2534

    Article  PubMed  Google Scholar 

  22. Park S, Chapuis N, Tamburini J et al (2010) Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica 95(5):819–828

    Article  CAS  PubMed  Google Scholar 

  23. Martelli AM, Evangelisti C, Chappell W et al (2011) Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia 25(7):1064–1079

    Article  CAS  PubMed  Google Scholar 

  24. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136

    Article  CAS  PubMed  Google Scholar 

  25. Wada T, Joza N, Cheng HY et al (2004) MKK7 couples stress signalling to G2/M cell-cycle progression and cellular senescence. Nat Cell Biol 6(3):215–226

    Article  CAS  PubMed  Google Scholar 

  26. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27(48):6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Basu S, Kolesnick R (1998) Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene 17(25):3277–3285

    Article  PubMed  Google Scholar 

  28. Chen F (2012) JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res 72(2):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (No. 81573772, 81403263). This study was supported by the Science and Technology Development Projects (No: 2014GSF118141) and the Taishan Scholar Program of Shandong province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-yao Li or Yusen Liu.

Ethics declarations

Conflict of interest

They have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Gz., Liu, Jz., Li, Xq. et al. Knockdown of eukaryotic translation initiation factor 3 subunit D (eIF3D) inhibits proliferation of acute myeloid leukemia cells. Mol Cell Biochem 438, 191–198 (2018). https://doi.org/10.1007/s11010-017-3127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3127-5

Keywords

Navigation