Skip to main content
Log in

Retinoid acid and taurine promote NeuroD1-induced differentiation of induced pluripotent stem cells into retinal ganglion cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Induced pluripotent stem cells (iPSCs) possess the capacity to differentiate into multiple cell types including retinal neurons. Despite substantial progress in the transcriptional regulation of iPSC differentiation process, the efficiency of generation of retinal neurons from iPSCs is still low. In this study, we investigated the role of transcription factor NeuroD1 in the differentiation of iPSCs into retinal neurons. We observed that retrovirus-mediated NeuroD1 overexpression in iPSCs increased the efficiency of neuronal differentiation. Immunostaining analysis showed that NeuroD1 overexpression increased the expression of retina ganglion cell markers including Islet-1, Math5, Brn3b, and Thy1.2. Retinoid acid (RA) and taurine further improved the differentiation efficiency of iPSCs overexpressing NeuroD1. However, RA and taurine did not promote differentiation in the absence of NeuroD1 overexpression. Together, our study provides new evidence in transcription factor-regulated stem cell differentiation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bull ND, Martin KR (2011) Concise review: toward stem cell-based therapies for retinal neurodegenerative diseases. Stem cells 29(8):1170–1175. doi:10.1002/stem.676

    Article  PubMed  Google Scholar 

  2. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  3. Yamanaka S (2008) Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 41(Suppl 1):51–56. doi:10.1111/j.1365-2184.2008.00493.x

    PubMed  Google Scholar 

  4. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122(Pt 17):3169–3179. doi:10.1242/jcs.050393

    Article  CAS  PubMed  Google Scholar 

  5. Parameswaran S, Balasubramanian S, Babai N, Qiu F, Eudy JD, Thoreson WB, Ahmad I (2010) Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem cells 28(4):695–703. doi:10.1002/stem.320

    Article  CAS  PubMed  Google Scholar 

  6. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458(3):126–131. doi:10.1016/j.neulet.2009.04.035

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka T, Yokoi T, Tamalu F, Watanabe S, Nishina S, Azuma N (2015) Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep 5:8344. doi:10.1038/srep08344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akagi T, Inoue T, Miyoshi G, Bessho Y, Takahashi M, Lee JE, Guillemot F, Kageyama R (2004) Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification. J Biol Chem 279(27):28492–28498. doi:10.1074/jbc.M400871200

    Article  CAS  PubMed  Google Scholar 

  9. Hatakeyama J, Kageyama R (2004) Retinal cell fate determination and bHLH factors. Semin Cell Dev Biol 15(1):83–89. doi:10.1016/j.semcdb.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  10. Ohsawa R, Kageyama R (2008) Regulation of retinal cell fate specification by multiple transcription factors. Brain Res 1192:90–98. doi:10.1016/j.brainres.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  11. Trimarchi JM, Stadler MB, Cepko CL (2008) Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS ONE 3(2):e1588. doi:10.1371/journal.pone.0001588

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vetter ML, Brown NL (2001) The role of basic helix-loop-helix genes in vertebrate retinogenesis. Semin Cell Dev Biol 12(6):491–498. doi:10.1006/scdb.2001.0273

    Article  CAS  PubMed  Google Scholar 

  13. Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268(5212):836–844

    Article  CAS  PubMed  Google Scholar 

  14. Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE (2001) NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128(3):417–426

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14(22):2839–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pennesi ME, Cho JH, Yang Z, Wu SH, Zhang J, Wu SM, Tsai MJ (2003) BETA2/NeuroD1 null mice: a new model for transcription factor-dependent photoreceptor degeneration. J Neurosci 23(2):453–461

    CAS  PubMed  Google Scholar 

  17. Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233. doi:10.1016/j.neures.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  18. Lee JK, Cho JH, Hwang WS, Lee YD, Reu DS, Suh-Kim H (2000) Expression of neuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of nervous system. Develop Dyn 217(4):361–367. doi:10.1002/(sici)1097-0177(200004)217:4<361:aid-dvdy3>3.0.co;2-8

    Article  CAS  Google Scholar 

  19. Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13(13):1647–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwab MH, Bartholomae A, Heimrich B, Feldmeyer D, Druffel-Augustin S, Goebbels S, Naya FJ, Zhao S, Frotscher M, Tsai MJ, Nave KA (2000) Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. J Neurosci 20(10):3714–3724

    CAS  PubMed  Google Scholar 

  21. Kiyama T, Mao CA, Cho JH, Fu X, Pan P, Mu X, Klein WH (2011) Overlapping spatiotemporal patterns of regulatory gene expression are required for neuronal progenitors to specify retinal ganglion cell fate. Vision Res 51(2):251–259. doi:10.1016/j.visres.2010.10.016

    Article  PubMed  Google Scholar 

  22. Mao CA, Wang SW, Pan P, Klein WH (2008) Rewiring the retinal ganglion cell gene regulatory network: Neurod1 promotes retinal ganglion cell fate in the absence of Math5. Development 135(20):3379–3388. doi:10.1242/dev.024612

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi J, Palmer TD, Gage FH (1999) Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol 38(1):65–81

    Article  CAS  PubMed  Google Scholar 

  24. Wohl CA, Weiss S (1998) Retinoic acid enhances neuronal proliferation and astroglial differentiation in cultures of CNS stem cell-derived precursors. J Neurobiol 37(2):281–290

    Article  CAS  PubMed  Google Scholar 

  25. Johnson JE, Zimmerman K, Saito T, Anderson DJ (1992) Induction and repression of mammalian achaete-scute homologue (MASH) gene expression during neuronal differentiation of P19 embryonal carcinoma cells. Development 114(1):75–87

    CAS  PubMed  Google Scholar 

  26. Shimazaki T, Okazawa H, Fujii H, Ikeda M, Tamai K, McKay RD, Muramatsu M, Hamada H (1993) Hybrid cell extinction and re-expression of Oct-3 function correlates with differentiation potential. EMBO J 12(12):4489–4498

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujii H, Hamada H (1993) A CNS-specific POU transcription factor, Brn-2, is required for establishing mammalian neural cell lineages. Neuron 11(6):1197–1206

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Zeng YS, Wang JM, Ding Y, Li Y, Wu W (2009) Neurotrophin-3 improves retinoic acid-induced neural differentiation of skin-derived precursors through a p75NTR-dependent signaling pathway. Neurosci Res 64(2):170–176. doi:10.1016/j.neures.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  29. Militante JD, Lombardini JB (2002) Taurine: evidence of physiological function in the retina. Nutrit Neurosci 5(2):75–90

    Article  CAS  Google Scholar 

  30. Kim C, Cha YN (2014) Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 46(1):89–100. doi:10.1007/s00726-013-1545-6

    Article  CAS  PubMed  Google Scholar 

  31. Menzie J, Prentice H, Wu JY (2013) Neuroprotective mechanisms of taurine against ischemic stroke. Brain Sci 3(2):877–907. doi:10.3390/brainsci3020877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Birdsall TC (1998) Therapeutic applications of taurine. Alternat Med Rev 3(2):128–136

    CAS  Google Scholar 

  33. Gebara E, Udry F, Sultan S, Toni N (2015) Taurine increases hippocampal neurogenesis in aging mice. Stem cell Res 14(3):369–379. doi:10.1016/j.scr.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  34. Ramos-Mandujano G, Hernandez-Benitez R, Pasantes-Morales H (2014) Multiple mechanisms mediate the taurine-induced proliferation of neural stem/progenitor cells from the subventricular zone of the adult mouse. Stem cell research 12(3):690–702. doi:10.1016/j.scr.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  35. Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27(1–2):21–26

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Sun X, Jiang R, Shen W, Zhong X, Liu B, Qi Y, Huang B, Xiang AP, Ge J (2009) Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts. Cell Biol Int 33(12):1268–1273. doi:10.1016/j.cellbi.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Chen M, Huang J, Yang X, Liu B, Zhang W, Huang L, Deng F, Ma J, Bai Y, Lu R, Huang B, Gao Q, Zhuo Y, Ge J (2012) Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. PLoS ONE 7(4):e28203. doi:10.1371/journal.pone.0028203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fukuda Y (1977) A three-group classification of rat retinal ganglion cells: histological and physiological studies. Brain Res 119(2):327–334

    Article  CAS  PubMed  Google Scholar 

  39. Skowronska-Krawczyk D, Chiodini F, Ebeling M, Alliod C, Kundzewicz A, Castro D, Ballivet M, Guillemot F, Matter-Sadzinski L, Matter JM (2009) Conserved regulatory sequences in Atoh7 mediate non-conserved regulatory responses in retina ontogenesis. Development 136(22):3767–3777. doi:10.1242/dev.033449

    Article  CAS  PubMed  Google Scholar 

  40. Willardsen MI, Suli A, Pan Y, Marsh-Armstrong N, Chien CB, El-Hodiri H, Brown NL, Moore KB, Vetter ML (2009) Temporal regulation of Ath5 gene expression during eye development. Develop Biol 326(2):471–481. doi:10.1016/j.ydbio.2008.10.046

    Article  CAS  PubMed  Google Scholar 

  41. Brzezinski JA, Kim EJ, Johnson JE, Reh TA (2011) Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 138(16):3519–3531. doi:10.1242/dev.064006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao J, Sun X, Wang Y, Xu G, Qian J (2007) Math5 promotes retinal ganglion cell expression patterns in retinal progenitor cells. Mol Vis 13:1066–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen M, Chen Q, Sun X, Shen W, Liu B, Zhong X, Leng Y, Li C, Zhang W, Chai F, Huang B, Gao Q, Xiang AP, Zhuo Y, Ge J (2010) Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Invest Ophthalmol Vis Sci 51(11):5970–5978. doi:10.1167/iovs.09-4504

    Article  PubMed  Google Scholar 

  44. Gan L, Wang SW, Huang Z, Klein WH (1999) POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. Develop Biol 210(2):469–480. doi:10.1006/dbio.1999.9280

    Article  CAS  PubMed  Google Scholar 

  45. Yan RT, Wang SZ (1998) neuroD induces photoreceptor cell overproduction in vivo and de novo generation in vitro. J Neurobiol 36(4):485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hitchcock P, Kakuk-Atkins L (2004) The basic helix-loop-helix transcription factor neuroD is expressed in the rod lineage of the teleost retina. J Comp Neurol 477(1):108–117. doi:10.1002/cne.20244

    Article  CAS  PubMed  Google Scholar 

  47. Ochocinska MJ, Hitchcock PF (2009) NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. Mech Dev 126(3–4):128–141. doi:10.1016/j.mod.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Etter P, Hayes S, Jones I, Nelson B, Hartman B, Forrest D, Reh TA (2008) NeuroD1 regulates expression of thyroid hormone receptor 2 and cone opsins in the developing mouse retina. J of Neurosci 28(3):749–756. doi:10.1523/jneurosci.4832-07.2008

    Article  CAS  Google Scholar 

  49. Yan RT, Wang SZ (2000) Expression of an array of photoreceptor genes in chick embryonic retinal pigment epithelium cell cultures under the induction of neuroD. Neurosci Lett 280(2):83–86

    Article  CAS  PubMed  Google Scholar 

  50. Yan RT, Wang SZ (2004) Requirement of neuroD for photoreceptor formation in the chick retina. Invest Ophthalmol Vis Sci 45(1):48–58

    Article  PubMed  PubMed Central  Google Scholar 

  51. Agathocleous M, Harris WA (2009) From progenitors to differentiated cells in the vertebrate retina. Annu Rev Cell Dev Biol 25:45–69. doi:10.1146/annurev.cellbio.042308.113259

    Article  CAS  PubMed  Google Scholar 

  52. Livesey FJ, Cepko CL (2001) Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2(2):109–118. doi:10.1038/35053522

    Article  CAS  PubMed  Google Scholar 

  53. Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87(2):91–99. doi:10.1139/y08-110

    Article  CAS  PubMed  Google Scholar 

  54. Sultan S, Gebara EG, Moullec K, Toni N (2013) D-serine increases adult hippocampal neurogenesis. Front Neurosci 7:155. doi:10.3389/fnins.2013.00155

    PubMed  PubMed Central  Google Scholar 

  55. Yamashita M, Emerman M (2006) Retroviral infection of non-dividing cells: old and new perspectives. Virology 344(1):88–93. doi:10.1016/j.virol.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  56. Jagatha B, Divya MS, Sanalkumar R, Indulekha CL, Vidyanand S, Divya TS, Das AV, James J (2009) In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun 380(2):230–235. doi:10.1016/j.bbrc.2009.01.038

    Article  CAS  PubMed  Google Scholar 

  57. Mellough CB, Cui Q, Spalding KL, Symons NA, Pollett MA, Snyder EY, Macklis JD, Harvey AR (2004) Fate of multipotent neural precursor cells transplanted into mouse retina selectively depleted of retinal ganglion cells. Exp Neurol 186(1):6–19. doi:10.1016/j.expneurol.2003.10.021

    Article  PubMed  Google Scholar 

  58. Nishida A, Takahashi M, Tanihara H, Nakano I, Takahashi JB, Mizoguchi A, Ide C, Honda Y (2000) Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest Ophthalmol Vis Sci 41(13):4268–4274

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Chen, M., Zhang, W. et al. Retinoid acid and taurine promote NeuroD1-induced differentiation of induced pluripotent stem cells into retinal ganglion cells. Mol Cell Biochem 438, 67–76 (2018). https://doi.org/10.1007/s11010-017-3114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3114-x

Keywords

Navigation