Skip to main content
Log in

Aegle marmelos differentially affects hepatic markers of glycolysis, insulin signalling pathway, hypoxia, and inflammation in HepG2 cells grown in fructose versus glucose-rich environment

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fructose consumption is responsible for the onset of insulin resistance (IR), and metabolic syndrome. It possesses no functional utility in body and its detrimental effects on hepatic metabolic milieu are beyond those produced by glucose. The need of the hour is to identify fructose-induced IR as an unique pathological state to be managed differentially. The effect of aqueous leaf extract of Aegle marmelos (AM) on hepatic markers of insulin resistance using HepG2 cells cultured in either fructose or glucose-rich environment is investigated. Human hepatocellular carcinoma cells (HepG2) were grown under standard conditions in either—DMEM without glucose (NC), DMEM with high glucose 25 mM (Glu), DMEM-glucose+0.55 mM fructose (FC1), DMEM-glucose+1 mM fructose (FC2) or DMEM-glucose+1 mM fructose+0.1 µM insulin (FC3). The cells were treated with either AM, rutin, quercetin, metformin or pioglitazone and assessed for levels of hexokinase, phosphofructokinase (PFK), aldehyde dehydrogenase, phosphatidylinositol kinase (PI3K), signal transducer and activator of transcription-3 (STAT-3), mitochondrial target of rapamycin (mTOR), hypoxia-induced factor (HIF-1α), vascular endothelial growth factor (VEGF) and tumour necrosis factor (TNF-α). Summarily, when results from fructose- and glucose-rich environment were compared, then (1) IR was more pronounced in former; (2) AM performed better in former; (3) metformin and pioglitazone were equivocal in either; (4) rutin and quercetin showed deviant effects from AM; and lastly (5) effects of rutin were closer to AM than quercetin. We hypothesize that AM ameliorates fructose-induced IR through a mechanism which is distinct from standard drugs and not shared by individual phytoconstituents in toto.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meigs JB (2003) Epidemiology of the insulin resistance syndrome. Curr Diab Rep 3:73–79

    Article  PubMed  Google Scholar 

  3. Goran MI, Dumke K, Bouret SG, Kayser B, Walker RW, Blumberg B (2013) The obesogenic effect of high fructose exposure during early development. Nat Rev Endocrinol 9:494–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lustig RH (2010) Fructose: metabolic, hedonic, and societal parallels with ethanol. J Am Diet Assoc 110(9):1307–1321. doi:10.1016/j.jada.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  5. Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond) 2:5

    Article  Google Scholar 

  6. Douard V, Ferraris RP (2013) The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol 591:401–414

    Article  CAS  PubMed  Google Scholar 

  7. Miller A, Adeli K (2008) Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol. 2:204–209. doi:10.1097/MOG.0b013e3282f3f4c4

    Article  Google Scholar 

  8. Zavaroni I, Sander S, Scott S, Reaven GM (1980) Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism 29:970–973

    Article  CAS  PubMed  Google Scholar 

  9. Rebollo A, Roglans N, Alegret M, Laguna JC (2012) Way back for fructose and liver metabolism: bench side to molecular insights. World J Gastroenterol 18(45):6552–6559. doi:10.3748/wjg.v18.i45.6552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Moura LP, Souza Pauli LS, Cintra DE, de Souza CT, da Silva AS, Marinho R, de Melo MA, Ropelle ER, Pauli JR (2013) Acute exercise decreases PTP-1B protein level and improves insulin signaling in the liver of old rats. Immun Ageing 10(1):8. doi:10.1186/1742-4933-10-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zheng X, Ke Y, Feng A, Yuan P, Zhou J, Yu Y, Wang X, Feng W (2016) The mechanism by which amentoflavone improves insulin resistance in HepG2 cells. Molecules 21(5):624. doi:10.3390/molecules21050624

    Article  Google Scholar 

  12. Maity P, Hansda D, Bandyopadhyay U, Mishra DK (2009) Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L.) Corr. Indian J Exp Biol 47(11):849–861

    CAS  PubMed  Google Scholar 

  13. Wolever TM (2000) Dietary carbohydrates and insulin action in humans. Br J Nutr. 83(1):S97–S102

    CAS  PubMed  Google Scholar 

  14. Ueno M, Bezerra RM, Silva MS, Tavares DQ, Carvalho CR, Saad MJ (2000) A high-fructose dietinduces changes in pp185 phosphorylation in muscle and liver of rats. Braz J Med Biol Res 33:1421–1427

    Article  CAS  PubMed  Google Scholar 

  15. Ansari P, Afroz N, Jalil S, Azad SB, Mustakim MG, Anwar S, Haque SM, Hossain SM, Tony RR, Hannan JM (2017) Anti-hyperglycemic activity of Aegle marmelos (L.) corr. is partly mediated by increased insulin secretion, α-amylase inhibition, and retardation of glucose absorption. J Pediatr Endocrinol Metab 30(1):37–47. doi:10.1515/jpem-2016-0160

    Article  PubMed  Google Scholar 

  16. Handa SS, Kapoor VK, Goel AK, Tandon N (eds) (2010) Phytochemical reference standards of selected Indian medicinal plants, vol 1. Medicinal PlantsUnit, Indian Council of Medical Research, New Delhi

    Google Scholar 

  17. Brandstrup N, Kirk JE, Bruni C (1957) The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol 12:166–171

    Article  CAS  PubMed  Google Scholar 

  18. Kraemer RJ (1968) Isolation and characterization of human liver aldehyde dehvdrogenase. J Biol Chem 243:6402–6408

    CAS  PubMed  Google Scholar 

  19. Elliott SS, Keim NK, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922

    CAS  PubMed  Google Scholar 

  20. Mayes PA (1993) Intermediary metabolism of fructose. Am J Clin Nutr 58:754S–765S

    Article  CAS  PubMed  Google Scholar 

  21. Chen Q, Wang T, Li J, Wang S, Qiu F, Yu H, Zhang Y, Wang T (2017) Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients 9:96

    Article  PubMed Central  Google Scholar 

  22. Tiwari AK, Rao JM (2002) Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci 83(1):30–38

    CAS  Google Scholar 

  23. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. Freeman WH, New York

    Google Scholar 

  24. Hamer MJ, Dickson AJ (1990) Control of glycolysis in cultured chick embryo hepatocytes. Fructose 2, 6-bisphosphate content and phosphofructokinase-1 activity are stimulated by insulin and epidermal growth factor. Biochem J 269(3):685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellerstein MK, Schwarz JM, Neese RA (1996) Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr 16:523–557

    Article  CAS  PubMed  Google Scholar 

  26. Carroll VA, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66:6264–6270

    Article  CAS  PubMed  Google Scholar 

  27. Hyun B, Shin S, Lee A, Lee S, Song Y, Ha NJ, Cho KH, Kim K (2013) Metformin down-regulates TNF-α secretion via suppression of scavenger receptors in macrophages. Immune Netw 13(4):123–132. doi:10.4110/in.2013.13.4.123

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim J, Song G, Wu G, Bazer FW (2012) PNAS Plus: functional roles of fructose. Proc Natl Acad Sci 109:E1619–E1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mathur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, H., Nair, J., Sharma, P. et al. Aegle marmelos differentially affects hepatic markers of glycolysis, insulin signalling pathway, hypoxia, and inflammation in HepG2 cells grown in fructose versus glucose-rich environment. Mol Cell Biochem 438, 1–16 (2018). https://doi.org/10.1007/s11010-017-3108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3108-8

Keywords

Navigation