Molecular and Cellular Biochemistry

, Volume 436, Issue 1–2, pp 159–166 | Cite as

The use of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice: effects on behavior, oxidant/antioxidant status, and enzymes involved in brain neurotransmission

  • Matheus D. Baldissera
  • Carine F. Souza
  • Thirssa H. Grando
  • Michele R. Sagrillo
  • Aleksandro S. da Silva
  • Lenita M. Stefani
  • Silvia G. Monteiro
Article

Abstract

The aim of this study was to investigate the effects of tucumã oil (Astrocaryum vulgare) on memory, enzymatic activities of sodium–potassium pump (Na+, K+-ATPase) and acetylcholinesterase (AChE) in the brain of alloxan-induced diabetic mice. The animals were divided into four groups (n = 6 each): the group A (non-diabetic/water), the group B (non-diabetic/tucumã oil), the group C (diabetic/water), and the group D (diabetic/tucumã oil) treated 14 days with 5.0 mL kg−1 via oral gavage. Untreated diabetic mice (the group C) showed memory deficit, increased levels of thiobarbituric acid reactive species (TBARS) and protein carbonylation (PC), and decreased (p < 0.05) catalase (CAT), superoxide dismutase (SOD), and the Na+, K+-ATPase activities, while acetylcholinesterase (AChE) activity showed a significant increase (p < 0.05) compared to non-diabetic mice (the group A). Tucumã oil prevented these alterations in diabetic mice treated with tucumã oil (the group D) compared to diabetic mice (the group C). Our findings suggest that tucumã oil can modulate cholinergic neurotransmission resting membrane potential of neurons by modulating enzymatic antioxidant defenses. In conclusion, the present data showed that treatment with tucumã oil is beneficial to diabetic mice, demonstrating that this oil can modulate cholinergic neurotransmission and consequently improve or avoid memory deficits.

Keywords

Hyperglycemia Na+, K+-ATPase AChE Antioxidant system Memory 

Notes

Compliance with ethical standards

Conflict of interest

All authors disclose here that there is no conflict of interests that could inappropriately influence the outcome of the present study.

Ethics approval

All animal procedures were approved according to the institutional guidelines of the Ethics Committee for Use of Animals (CEUA) of Universidade do Estado de Santa Catarina (UDESC), under protocol number 8055270416.

References

  1. 1.
    Gannon M (2001) Molecular genetic analysis of diabetes in mice. Trends Genet 17:S23–S28CrossRefPubMedGoogle Scholar
  2. 2.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14CrossRefPubMedGoogle Scholar
  3. 3.
    Northam E, Rankins D, Cameron FJ (2006) Therapy insight: the impact of type 1 diabetes on brain development and function. Nat Clin Pract Neurol 2:78–86CrossRefPubMedGoogle Scholar
  4. 4.
    Stefanello N, Schmatz R, Pereira LB, Rubin MA, da Rocha JBT, Facco G, Pereira ME, Mazzanti CMA, Passamonti S, Rodrigues MV, Carvalho FB, Da Rosa MM, Gutierres JM, Cardoso AM, Morsch VM, Schetinger MRC (2014) Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats. Mol Cell Biochem 388:277–286CrossRefPubMedGoogle Scholar
  5. 5.
    Ahmed N, Thornalley PJ (2007) Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab 9:233–245CrossRefPubMedGoogle Scholar
  6. 6.
    Sima AAF, Kamiya H, Lia ZG (2004) Insulin, C-peptide, hyperglycemia, and central nervous system complication in diabetes. Eur J Pharmacol 490:187–197CrossRefPubMedGoogle Scholar
  7. 7.
    Brands AM, Biessels GJ, Kappelle LJ, de Haan EH, de Valk HW, Algra A, Kessels RPC (2007) Cognitive functioning and brain MR1 in patients with type 1 and type 2 diabetes mellitus: a comparative study. Dement Geriatr Cogn Disord 23:343–350CrossRefPubMedGoogle Scholar
  8. 8.
    Saliu JA, Oboh G, Omojokun OS, Rocha JB, Schetinger MR, Guterries J, Stefanello N, Carvalho F, Schmatz R, Morsch VM, Boligon A (2016) Effect of dietary supplementation of Padauk (Pterocarpus soyauxii) leaf on high/fat diet/streptozotocin induced diabetes in rats’ brain and platelets. Biomed Pharmacother 84:1194–1201CrossRefPubMedGoogle Scholar
  9. 9.
    Pari L, Murugan P (2007) Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats. J Med Food 10:323–329CrossRefPubMedGoogle Scholar
  10. 10.
    Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M, da Rosa MM, Rubin MA, Schetinger MRC, Morsch VM (2009) Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 610:42–48CrossRefPubMedGoogle Scholar
  11. 11.
    Clausen T, Van Hardeveld C, Everts ME (1991) Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev 71:733–774PubMedGoogle Scholar
  12. 12.
    Santini SA, Cotroneo P, Marra G, Manto A, Giardina B, Mordente A, Greco AV, Martorana GE, Magnani P, Ghirlanda G (1996) Na+/K+-ATPase impairment and experimental glycation: the role of glucose autoxidation. Free Radic Res 24:381–389CrossRefPubMedGoogle Scholar
  13. 13.
    Moseley AE, Williams MT, Schaefer LT, Bohanan CS, Neumann JC, Behbehani MM, Vorhees CV, Lingrel JB (2007) Deficiency in Na, K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci 27:616–626CrossRefPubMedGoogle Scholar
  14. 14.
    Kuhad A, Sethi R, Chopra K (2008) Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci 83:128–134CrossRefPubMedGoogle Scholar
  15. 15.
    Kahn F (2008) The genus Astrocaryum (Arecaceae). Rev Peru Biol 15:31–48Google Scholar
  16. 16.
    Bonnafous C, Viton F, Maraval G (2006) Propriétés antioxydantes, anti-radicalaires et anti-raideurs rhumatismales des huiles et du tourteau d’Astrocaryum vulgare FR2885296 (A1). US Patent FR2885296 (A1)Google Scholar
  17. 17.
    Bony E, Boudard F, Brat P, Dussossoy E, Portet K, Poucheret P, Giaimis J, Michel A (2012) Awara (Astrocaryum vulgare M.) pulp oil: chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation. Fitoterapia 83:33–43CrossRefPubMedGoogle Scholar
  18. 18.
    Sagrillo MR, Garcia LFM, Filho OCS, Duarte MMMF, Ribeiro EE, Cadoná FC, da Cruz IBM (2015) Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem 173:741–748CrossRefPubMedGoogle Scholar
  19. 19.
    Baldissera MD, Souza CF, Grando TH, Cossetin LF, Sagrillo MR, Nascimento K, da Silva AS, Machado AK, da Cruz IBM, Stefani LM, Klein B, Wagner R, Monteiro SG (2017) Antihyperglycemic, antioxidant activities of tucumã oil (Astrocaruym vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: new natural source to treat hyperglycemia. Chem Biol Interact 270:51–58CrossRefPubMedGoogle Scholar
  20. 20.
    Guerra GP, Mello CF, Sauzem PD, Berlese DB, Furian AF, Tabarelli Z, Rubin MA (2006) Nitric oxide is involved in the memory facilitation induced by spermidine in rats. Psychopharmacology 186:150–158CrossRefPubMedGoogle Scholar
  21. 21.
    Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504CrossRefPubMedGoogle Scholar
  22. 22.
    Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  23. 23.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analyt Bioc 95:351–358CrossRefGoogle Scholar
  24. 24.
    Reznick AZ, Packer L (1994) Oxidative damage of proteins: spectrophotometer for carbonyl assay. Method Enzymol 233:357–363CrossRefGoogle Scholar
  25. 25.
    Levine RL, Garland D, Oliver CN, Amici I, Climent AG, Lenz BW, Ahn S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Method Enzymol 186:464–478CrossRefGoogle Scholar
  26. 26.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  27. 27.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 25:3170–3175Google Scholar
  28. 28.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  29. 29.
    Rocha JBT, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437Google Scholar
  30. 30.
    Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975CrossRefGoogle Scholar
  31. 31.
    Cahill L, Brioni J, Izquierdo I (1986) Retrograde memory enhancement by diazepam: its relation to anterograde amnesia and some clinical implications. Psychopharmacology 90:454–456CrossRefGoogle Scholar
  32. 32.
    Mesripour A, Moghimi F, Rafieian-Kopaie M (2016) The effect of Cinnamomum zeylanicum bark water extract on memory performance in alloxan-induced diabetic mice. Res Pharm Sci 11:318–323CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li Y, Man Y, Li N, Zhou Y (2015) Effects of vitamins E and C combined with β-carotene on cognitive function in the elderly. Exp Ther Med 9:1489–1493PubMedPubMedCentralGoogle Scholar
  34. 34.
    Wu K, Gao X, Shi B, Chen S, Zhou X, Li Z, Gan Y, Cui L, Kang JX, Li W, Huang R (2016) Enriched endogenous n-3 polyunsaturated fatty acids alleviate cognitive and behavioral deficits in a mice model of Alzheimer’s disease. Neuroscience 333:345–355CrossRefPubMedGoogle Scholar
  35. 35.
    Réus GZ, dos Santos MAB, Abelaira HM, Titus SE, Carlessi AS, Matias BI, Bruchchen L, Florentino D, Vieira A, Petronilho F, Ceretta LB, Zugno AI, Quevedo J (2016) Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas. Diabetes Metab Res Rev 32:278–288CrossRefPubMedGoogle Scholar
  36. 36.
    Miroddi M, Navarra M, Quattropani MC, Calapai F, Gangemi S, Calapai G (2014) Systematic review of clinical trials assessing pharmacological properties of Salvia species on memory, cognitive impairment and Alzheimer’s disease. CNS Neurosci Ther 20:485–495CrossRefPubMedGoogle Scholar
  37. 37.
    Ghareeb DA, Hussen HM (2008) Vanadium improves brain acetylcholinesterase activity on early stage alloxan-diabetic rats. Neurosci Lett 436:44–47CrossRefPubMedGoogle Scholar
  38. 38.
    Kuhad A, Chopra K (2007) Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. Eur J Pharmacol 576:34–42CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Microbiology and ParasitologyUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  2. 2.Laboratory of Cell CultureCentro Universitário FranciscanoSanta MariaBrazil
  3. 3.Graduate School of Animal ScienceUniversidade do Estado de Santa Catarina (UDESC)ChapecóBrazil

Personalised recommendations