Molecular and Cellular Biochemistry

, Volume 436, Issue 1–2, pp 137–150 | Cite as

Protein kinase CK2 regulates redox homeostasis through NF-κB and Bcl-xL in cardiomyoblasts

Article
  • 203 Downloads

Abstract

Oxygen consumption is particularly elevated in cardiac cells as they are equipped with a large number of mitochondria and high levels of respiratory chain components. Consequently, production of reactive oxygen species (ROS) is tightly controlled as an imbalance in redox reactions can lead to irreversible cellular damage. siRNA-mediated down-regulation of protein kinase CK2 has been implicated in the accumulation of ROS in cells. The present study was undertaken in order to investigate the role of CK2 in redox homeostasis in cardiomyoblasts. We found that inhibition or silencing of CK2 causes elevated levels of ROS, notably superoxide radical, and this is accompanied by suppression of NF-κB transcriptional activity and mitochondrial dysfunction. We show that CK2 regulates the expression of manganese superoxide dismutase, the enzyme catalyzing the dismutation of superoxide, in cancer cells but not in cardiomyoblasts. Furthermore, we report evidence that impaired expression of CK2 results in destabilization of the Bcl-2 mammalian homolog Bcl-xL, which is known to stabilize the mitochondrial membrane potential, through a mechanism involving disruption of the chaperone function of heat shock protein 90. Analysis of differential mRNA expression related to oxidative stress revealed that CK2 silencing caused a statistically significant deregulation of four genes associated with the oxidative damage, i.e., Fmo2, Ptgs1, Dhcr24, and Ptgs2. Overall, the results reported here are consistent with the notion that CK2 plays a role in conferring protection against oxidative stress by positively regulating pro-survival signaling molecules and the protein folding machinery in cardiomyoblasts.

Keywords

CK2 ROS NF-κB/RelA Bcl-xL HSP-90 Cardiomyoblasts 

Notes

Acknowledgements

The authors would like to thank Dr. Olaf-Georg Issinger (University of Southern Denmark) for critically reading the manuscript; Dr. David W. Litchfield (University of Western Ontario) for the generous gift of the RS3.22 cell line; Dr. Tuula Kallunki (Danish Cancer Society) for providing the Bcl-xL viral vector; Dr. Phillip Hallenborg (University of Southern Denmark) for expertise in establishing Bcl-xL-overexpressing cardiomyoblasts; and Tina H. Svenstrup for technical assistance. We thank the Drug Synthesis and Chemistry Branch, Developmental Therapeutics Program, NCI, USA, for providing us with viable samples. This work was supported by the Danish Council for Independent Research-Natural Sciences (Grant 1323-00212A to B. Guerra).

Supplementary material

11010_2017_3085_MOESM1_ESM.tiff (484 kb)
Supplementary material Fig. S1 Analysis of Bcl-xL overexpression in cardiomyoblasts. H9c-2 cells transduced with Bcl-xL-encoding viral particles were transfected with scramble siRNA or siRNA against the individual catalytic subunits of CK2 as indicated in the figure. Whole cell lysates were analyzed employing antibodies against the indicated proteins. (TIFF 484 kb)
11010_2017_3085_MOESM2_ESM.docx (69 kb)
Supplementary material Table S1 Selected hits identified in the gene expression profile (DOCX 69 kb)

References

  1. 1.
    Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13. doi: 10.1042/bj2840001 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Taverne YJHJ, Bogers AJJC, Duncker DJ, Merkus D (2013) Reactive oxygen species and the cardiovascular system. Oxid Med Cell Longev. doi: 10.1155/2013/862423 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. doi: 10.1113/jphysiol.2003.049478 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Castaldo SA, Freitas JR, Conchinha NV, Madureira PA (2016) The tumorigenic roles of the cellular REDOX regulatory systems. Oxid Med Cell Longev 2016:1–17. doi: 10.1155/2016/8413032 CrossRefGoogle Scholar
  5. 5.
    Truong TH, Carroll KS (2013) Redox regulation of protein kinases. Crit Rev Biochem Mol Biol 48:332–356. doi: 10.3109/10409238.2013.790873 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Knock GA, Ward JPT (2011) Redox regulation of protein kinases as a modulator of vascular function. Antioxid Redox Signal 15:1531–1547. doi: 10.1089/ars.2010.3614 CrossRefPubMedGoogle Scholar
  7. 7.
    Morgan MJ, Liu Z-G (2010) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115. doi: 10.1038/cr.2010.178 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Montenarh M (2009) DMAT, an inhibitor of protein kinase CK2 induces reactive oxygen species and DNA double strand breaks. Oncol Rep 21:1593–1597. doi: 10.3892/or_00000392 CrossRefPubMedGoogle Scholar
  9. 9.
    Kim GS, Jung JE, Niizuma K, Chan PH (2009) CK2 is a novel negative regulator of NADPH oxidase and a neuroprotectant in mice after cerebral ischemia. J Neurosci 29:14779–14789. doi: 10.1523/JNEUROSCI.4161-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Guerra B (2012) Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. Int J Oncol 41:1967–1976. doi: 10.3892/ijo.2012.1635 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qaiser F, Trembley JH, Kren BT et al (2014) Protein Kinase CK2 Inhibition Induces Cell Death via Early Impact on Mitochondrial Function. J Cell Biochem 115:2103–2115. doi: 10.1002/jcb.24887 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Guerra B, Issinger O-G (1999) Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 20:391–408. doi: 10.1002/(SICI)1522-2683(19990201)20:2<391:AID-ELPS391>3.0.CO;2-N CrossRefPubMedGoogle Scholar
  13. 13.
    Guerra B, Issinger O-G (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15:1870–1886CrossRefPubMedGoogle Scholar
  14. 14.
    St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease. Cell Mol Life Sci 66:1817–1829. doi: 10.1007/s00018-009-9150-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Trembley JH, Chen Z, Unger G et al (2010) Emergence of protein kinase CK2 as a key target in cancer therapy. BioFactors 36:187–195. doi: 10.1002/biof.96 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Guerra B, Iwabuchi K, Issinger O-G (2014) Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Lett 345:115–123. doi: 10.1016/j.canlet.2013.11.008 CrossRefPubMedGoogle Scholar
  17. 17.
    Hallenborg P, Feddersen S, Francoz S et al (2012) Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation. Cell Death Differ 19:1381–1389. doi: 10.1038/cdd.2012.15 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Olsen BB, Issinger OG, Guerra B (2010) Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 29:6016–6026. doi: 10.1038/onc.2010.337 CrossRefPubMedGoogle Scholar
  19. 19.
    Olsen BB, Wang S-Y, Svenstrup TH et al (2012) Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage. BMC Mol Biol 13:7. doi: 10.1186/1471-2199-13-7 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Guerra B, Fischer M, Schaefer S, Issinger O-G (2015) The kinase inhibitor D11 induces caspase-mediated cell death in cancer cells resistant to chemotherapeutic treatment. J Exp Clin Cancer Res 34:125. doi: 10.1186/s13046-015-0234-6 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  22. 22.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  23. 23.
    Guerra B, Hochscherf J, Jensen NB, Issinger O-G (2015) Identification of a novel potent, selective and cell permeable inhibitor of protein kinase CK2 from the NIH/NCI Diversity Set Library. Mol Cell Biochem 406:151–161. doi: 10.1007/s11010-015-2433-z CrossRefPubMedGoogle Scholar
  24. 24.
    Marchi S, Giorgi C, Suski JM et al (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. doi: 10.1155/2012/329635 PubMedGoogle Scholar
  25. 25.
    Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41:699–712. doi: 10.1080/10715760701297354 CrossRefPubMedGoogle Scholar
  26. 26.
    Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253. doi: 10.1016/j.abb.2007.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cottet-Rousselle C, Ronot X, Leverve X, Mayol J-F (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytom A 79:405–425. doi: 10.1002/cyto.a.21061 CrossRefGoogle Scholar
  28. 28.
    To M-S, Aromataris EC, Castro J et al (2010) Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca(2+) current in liver cells. Arch Biochem Biophys 495:152–158. doi: 10.1016/j.abb.2010.01.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Sakon S, Xue X, Takekawa M et al (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909. doi: 10.1093/emboj/cdg379 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Viatour P, Merville M-P, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52. doi: 10.1016/j.tibs.2004.11.009 CrossRefPubMedGoogle Scholar
  31. 31.
    Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708. doi: 10.1038/ni.2065 CrossRefPubMedGoogle Scholar
  32. 32.
    Jones PL, Ping D, Boss JM (1997) Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB. Mol Cell Biol 17:6970–6981CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Djavaheri-Mergny M, Javelaud D, Wietzerbin J, Besançon F (2004) NF-kappaB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Lett 578:111–115. doi: 10.1016/j.febslet.2004.10.082 CrossRefPubMedGoogle Scholar
  34. 34.
    Kairisalo M, Korhonen L, Blomgren K, Lindholm D (2007) X-linked inhibitor of apoptosis protein increases mitochondrial antioxidants through NF-kappaB activation. Biochem Biophys Res Commun 364:138–144. doi: 10.1016/j.bbrc.2007.09.115 CrossRefPubMedGoogle Scholar
  35. 35.
    Vilk G, Saulnier RB, Pierre RS, Litchfield DW (1999) Inducible Expression of Protein Kinase CK2 in Mammalian Cells: EVIDENCE FOR FUNCTIONAL SPECIALIZATION OF CK2 ISOFORMS. J Biol Chem 274:14406–14414. doi: 10.1074/jbc.274.20.14406 CrossRefPubMedGoogle Scholar
  36. 36.
    Chen C, Edelstein LC, Gélinas C (2000) The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20:2687–2695CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kim JJ, Lee SB, Park JK, Yoo YD (2010) TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ 17:1420–1434. doi: 10.1038/cdd.2010.19 CrossRefPubMedGoogle Scholar
  38. 38.
    Genestier L, Bonnefoy-Berard N, Rouault JP et al (1995) Tumor necrosis factor-alpha up-regulates Bcl-2 expression and decreases calcium-dependent apoptosis in human B cell lines. Int Immunol 7:533–540CrossRefPubMedGoogle Scholar
  39. 39.
    Vander Heiden MG, Chandel NS, Williamson EK et al (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637CrossRefPubMedGoogle Scholar
  40. 40.
    Shirakata Y, Koike K (2003) Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential. J Biol Chem 278:22071–22078. doi: 10.1074/jbc.M301606200 CrossRefPubMedGoogle Scholar
  41. 41.
    Miyata Y (2009) Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 66:1840–1849. doi: 10.1007/s00018-009-9152-0 CrossRefPubMedGoogle Scholar
  42. 42.
    Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133CrossRefGoogle Scholar
  43. 43.
    Echeverría PC, Bernthaler A, Dupuis P et al (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE 6:e26044. doi: 10.1371/journal.pone.0026044 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Taipale M, Krykbaeva I, Koeva M et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001. doi: 10.1016/j.cell.2012.06.047 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fu J, Koul D, Yao J et al (2013) Novel HSP90 inhibitor NVP-HSP990 targets cell-cycle regulators to ablate Olig2-positive glioma tumor-initiating cells. Cancer Res 73:3062–3074. doi: 10.1158/0008-5472.CAN-12-2033 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Caldas-Lopes E, Cerchietti L, Ahn JH et al (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA 106:8368–8373. doi: 10.1073/pnas.0903392106 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47. doi: 10.1016/j.bbapap.2007.08.017 CrossRefPubMedGoogle Scholar
  48. 48.
    Trembley JH, Wang G, Unger G et al (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 66:1858–1867. doi: 10.1007/s00018-009-9154-y CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ravi R, Bedi A (2002) Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II. Cancer Res 62:4180–4185PubMedGoogle Scholar
  50. 50.
    Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–387. doi: 10.1016/j.pharmthera.2005.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cashman JR, Zhang J (2006) Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46:65–100. doi: 10.1146/annurev.pharmtox.46.120604.141043 CrossRefPubMedGoogle Scholar
  52. 52.
    Suh JK, Robertus JD (2000) Yeast flavin-containing monooxygenase is induced by the unfolded protein response. Proc Natl Acad Sci USA 97:121–126CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gilroy DW, Colville-Nash PR, Willis D et al (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5:698–701. doi: 10.1038/9550 CrossRefPubMedGoogle Scholar
  54. 54.
    Sun Y, Chen J, Rigas B (2009) Chemopreventive agents induce oxidative stress in cancer cells leading to COX-2 overexpression and COX-2-independent cell death. Carcinogenesis 30:93–100. doi: 10.1093/carcin/bgn242 CrossRefPubMedGoogle Scholar
  55. 55.
    Sun Y, Tang XM, Half E et al (2002) Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res 62:6323–6328PubMedGoogle Scholar
  56. 56.
    Lu X, Kambe F, Cao X et al (2008) 3beta-Hydroxysteroid-delta24 reductase is a hydrogen peroxide scavenger, protecting cells from oxidative stress-induced apoptosis. Endocrinology 149:3267–3273. doi: 10.1210/en.2008-0024 CrossRefPubMedGoogle Scholar
  57. 57.
    Kuehnle K, Crameri A, Kälin RE et al (2008) Prosurvival effect of DHCR24/Seladin-1 in acute and chronic responses to oxidative stress. Mol Cell Biol 28:539–550. doi: 10.1128/MCB.00584-07 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations