Molecular and Cellular Biochemistry

, Volume 436, Issue 1–2, pp 111–117 | Cite as

Fibroblast contributes for osteoblastic phenotype in a MAPK-ERK and sonic hedgehog signaling-independent manner

  • Celio J. da Costa Fernandes
  • Augusto Santana do Nascimento
  • Rodrigo A. da Silva
  • Willian F. Zambuzzi
Article

Abstract

We hypothesized that a crosstalk between osteoblast and fibroblast (FB) exists, which contributes to bone as a dynamic tissue. Cell-free supernatants were harvested from fibroblast cultures and later subject pre-osteoblasts to investigate there capacity to modulate cell viability and differentiation mechanisms, reporting the possible involvement of Shh signaling as a paracrine mechanism. By exploring immunoblotting technology, we have shown that FB-released factors interfere with osteoblast metabolism by up-regulating the phosphorylation of FAK and Rac-1 proteins at the early stage and later contribute to osteoblast differentiation by up-modulating alkaline phosphatase (ALP) and in vitro mineralization. We also found that Shh signaling was not required during osteoblastic differentiation promoted by the FB-released factors as well as MAPK-ERK phosphorylation, while pre-osteoblast cultures subjected to osteogenic medium (O.M.) require downstream transducers of Shh, such as Patched and Gli-1, and MAPK-ERK. Altogether, our results indicate for the first time a possible mechanism involved in the crosstalk between fibroblasts and osteoblasts, as it was possible to observe trophic factors released by fibroblasts interfering decisively in osteoblast metabolism in a Shh-independent manner. This study collaborates the body of work that indicates paracrine signaling molecules participate in the crosstalk among bone-resident cells and explains, at least partially, the biological mechanisms responsible for bone tissue dynamism, opening new avenues to understand etiologies of bone diseases.

Keywords

Bone Fibroblast Osteoblast Crosstalk Cell signaling 

Notes

Acknowledgements

The authors are grateful to FAPESP (#2015/00581-9; #2014/22689-3) and CNPq (#477452/2012-4) for the financial support. W.F.Z. is a PQ-2 fellow from CNPq (#301966/2015-0).

Funding

This study was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (grants #2015/00581-9; #2014/22689-3) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (grant #477452/2012-4).

Compliance with ethical standards

Conflict of interest

All the authors declare to have no conflict of interest with the materials used in the present study.

References

  1. 1.
    Ap Kusumbe, Sk Ramasamy, Adams Rh (2014) Coupling Of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328. doi: 10.1038/Nature13145 CrossRefGoogle Scholar
  2. 2.
    Sk Ramasamy, Ap Kusumbe, Adams Rh (2015) Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends Cell Biol 25:148–157. doi: 10.1016/J.Tcb.2014.11.007 CrossRefGoogle Scholar
  3. 3.
    Funck-Brentano T, Cohen-Solal M (2011) Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev 22:91–97. doi: 10.1016/J.Cytogfr.2011.04.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Brotto M, Bonewald L (2015) Bone and muscle: interactions beyond mechanical. Bone 80:109–114. doi: 10.1016/J.Bone.2015.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gemini-Piperni S, Milani R, Bertazzo S, Al Et (2014) Kinome profiling of osteoblasts on hydroxyapatite opens new avenues on biomaterial cell signaling. Biotechnol Bioeng 111:1900–1905. doi: 10.1002/Bit.25246 CrossRefPubMedGoogle Scholar
  6. 6.
    Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504CrossRefPubMedGoogle Scholar
  7. 7.
    Lee B, Thirunavukkarasu K, Zhou L, Al Et (1997) Missense mutations abolishing dna binding of the osteoblast-specific transcription factor Osf2/Cbfa1 in cleidocranial dysplasia. Nat Genet 16:307–310. doi: 10.1038/Ng0797-307 CrossRefPubMedGoogle Scholar
  8. 8.
    Ducy P, Desbois C, Boyce B, Al Et (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452. doi: 10.1038/382448a0 CrossRefPubMedGoogle Scholar
  9. 9.
    Ducy P, Zhang R, Geoffroy V, Al Et (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754CrossRefPubMedGoogle Scholar
  10. 10.
    Ac Carreira, Gg Alves, Wf Zambuzzi, Al Et (2014) Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 561:64–73. doi: 10.1016/J.Abb.2014.07.011 CrossRefGoogle Scholar
  11. 11.
    Gs Baht, Silkstone D, Nadesan P, Al Et (2014) Activation of Hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation. J Orthop Res 32:581–586. doi: 10.1002/Jor.22562 CrossRefGoogle Scholar
  12. 12.
    Krishnan L, Lb Priddy, Esancy C, Al Et (2017) Delivery vehicle effects on bone regeneration and heterotopic ossification induced by high dose Bmp-2. Acta Biomater 49:101–112. doi: 10.1016/J.Actbio.2016.12.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Lee J, Sk Madhurakkat Perikamana, Ahmad T, Al Et (2017) Controlled retention of Bmp-2-derived peptide on nanofibers based on mussel-inspired adhesion for bone formation. Tissue Eng Part A. doi: 10.1089/Ten.Tea.2016.0363 Google Scholar
  14. 14.
    Kazmers Nh, Ja Mckenzie, Ts Shen, Al Et (2015) Hedgehog signaling mediates woven bone formation and vascularization during stress fracture healing. Bone 81:524–532. doi: 10.1016/J.Bone.2015.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wf Zambuzzi, Cl Yano, Adm Cavagis, Al Et (2009) Ascorbate-induced osteoblast differentiation recruits distinct Mmp-inhibitors: reck And Timp-2. Mol Cell Biochem 322:143–150. doi: 10.1007/S11010-008-9951-X CrossRefGoogle Scholar
  16. 16.
    Wf Zambuzzi, Bruni-Cardoso A, Jm Granjeiro, Al Et (2009) On the road to understanding of the osteoblast adhesion: cytoskeleton organization is rearranged by distinct signaling pathways. J Cell Biochem 108:134–144. doi: 10.1002/Jcb.22236 CrossRefGoogle Scholar
  17. 17.
    Cavagis A, Takamori E, Granjeiro J, Al Et (2014) Tnfalpha contributes for attenuating both Y397fak And Y416src phosphorylations in osteoblasts. Oral Dis 20:780–786. doi: 10.1111/Odi.12202 PubMedGoogle Scholar
  18. 18.
    Milani R, Ferreira CV, Jm Granjeiro, Al Et (2010) Phosphoproteome reveals an atlas of protein signaling networks during osteoblast adhesion. J Cell Biochem 109:957–966. doi: 10.1002/Jcb.22479 PubMedGoogle Scholar
  19. 19.
    Wf Zambuzzi, Milani R, Teti A (2010) Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice. Biochimie 92:327–332. doi: 10.1016/J.Biochi.2010.01.002 CrossRefGoogle Scholar
  20. 20.
    Wf Zambuzzi, Ferreira CV, Jm Granjeiro, Aoyama H (2011) Biological behavior of pre-osteoblasts on natural hydroxyapatite: a study of signaling molecules from attachment to differentiation. J Biomed Mater Res A 97:193–200. doi: 10.1002/Jbm.A.32933 Google Scholar
  21. 21.
    Gvo Fernandes, Adm Cavagis, Ferreira CV, Al Et (2014) Osteoblast adhesion dynamics: a possible role for Ros and Lmw-Ptp. J Cell Biochem 115:1063–1069. doi: 10.1002/Jcb.24691 CrossRefGoogle Scholar
  22. 22.
    Sun Z, Ss Guo, Fassler R (2016) Integrin-mediated mechanotransduction. J Cell Biol 215:445–456. doi: 10.1083/Jcb.201609037 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ohtsuka S, Ogawa S, Wakamatsu E, Abe R (2016) Cell cycle arrest caused by Mek/Erk signaling is a mechanism for suppressing growth of antigen-hyperstimulated effector T cells. Int Immunol 28:547–557. doi: 10.1093/Intimm/Dxw037 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rutault K, Ca Hazzalin, Lc Mahadevan (2001) Combinations of Erk and P38 Mapk inhibitors ablate tumor necrosis factor-alpha (Tnf-Alpha) Mrna induction. Evidence for selective destabilization of Tnf-Alpha transcripts. J Biol Chem 276:6666–6674. doi: 10.1074/Jbc.M005486200 CrossRefPubMedGoogle Scholar
  25. 25.
    Liu X, Zeng L, Zhao Z, Al Et (2017) Pbmc activation via the Erk and Stat signaling pathways enhances the anti-tumor activity of Staphylococcal enterotoxin A. Mol Cell Biochem. doi: 10.1007/S11010-017-3038-5 Google Scholar
  26. 26.
    Guo J-P, Li X-G (2017) Galectin-7 promotes the invasiveness of human oral squamous cell carcinoma cells via activation of Erk and Jnk signaling. Oncol Lett 13:1919–1924. doi: 10.3892/Ol.2017.5649 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Gao F, Li F, Miao Y, Al Et (2017) Involvement of the Mek-Erk/P38-Creb/C-Fos signaling pathway in Kir channel inhibition-induced rat retinal muller cell gliosis. Sci Rep 7:1480. doi: 10.1038/S41598-017-01557-Y CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mc Moorer, Hebert C, Re Tomlinson, Al Et (2017) Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. J Cell Sci 130:531–540. doi: 10.1242/Jcs.197285 CrossRefGoogle Scholar
  29. 29.
    Wang M, Shu Z-J, Wang Y, Peng W (2017) Stachydrine hydrochloride inhibits proliferation and induces apoptosis of breast cancer cells via inhibition of Akt and Erk pathways. Am J Transl Res 9:1834–1844PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Bioassays and Cell Dynamics Lab, Department of Chemistry and BiochemistryBioscience Institute, UNESPBotucatuBrazil

Personalised recommendations