Molecular and Cellular Biochemistry

, Volume 436, Issue 1–2, pp 13–21 | Cite as

RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly



Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.


SDF-1 Rho ROS Cytoskeleton Migration 



This work was supported by the National Natural Science Foundation of China (31401216, 31471332).

Compliance with ethical standards

Conflict of interest

All authors have no financial conflict of interest.


  1. 1.
    De La Luz Sierra M, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R, Zhang HH, Fales H, Tosato G (2004) Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 103:2452–2459. doi: 10.1182/blood-2003-08-2857 CrossRefPubMedGoogle Scholar
  2. 2.
    Kim CH, Broxmeyer HE (1998) In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91:100–110PubMedGoogle Scholar
  3. 3.
    Konopleva MY, Jordan CT (2011) Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 29:591–599. doi: 10.1200/JCO.2010.31.0904 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE (2004) Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 104:550–557. doi: 10.1182/blood-2004-02-0566 CrossRefPubMedGoogle Scholar
  5. 5.
    Patel B, Dey A, Castleton AZ, Schwab C, Samuel E, Sivakumaran J, Beaton B, Zareian N, Zhang CY, Rai L, Enver T, Moorman AV, Fielding AK (2014) Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology. Blood 124:96–105. doi: 10.1182/blood-2014-01-549352 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Passaro D, Irigoyen M, Catherinet C, Gachet S, Jesus, Da Costa De Jesus C, Lasgi C, Tran Quang C, Ghysdael J (2015) CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell 27:769–779. doi: 10.1016/j.ccell.2015.05.003 CrossRefPubMedGoogle Scholar
  7. 7.
    Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, Sanchez-Martin M, Tsirigos A, Littman DR, Ferrando AA, Morrison SJ, Fooksman DR, Aifantis I, Schwab SR (2015) CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27:755–768. doi: 10.1016/j.ccell.2015.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354:166–178. doi: 10.1056/NEJMra052603 CrossRefPubMedGoogle Scholar
  9. 9.
    Crazzolara R, Kreczy A, Mann G, Heitger A, Eibl G, Fink FM, Mohle R, Meister B (2001) High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol 115:545–553. doi: 10.1046/j.1365-2141.2001.03164.x CrossRefPubMedGoogle Scholar
  10. 10.
    Hesselgesser J, Liang M, Hoxie J, Greenberg M, Brass LF, Orsini MJ, Taub D, Horuk R (1998) Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligand binding, biological activity, and HIV-1 infectivity. J Immunol 160:877–883PubMedGoogle Scholar
  11. 11.
    Ottoson NC, Pribila JT, Chan AS, Shimizu Y (2001) Cutting edge: T cell migration regulated by CXCR4 chemokine receptor signaling to ZAP-70 tyrosine kinase. J Immunol 167:1857–1861. doi: 10.4049/jimmunol.167.4.1857 CrossRefPubMedGoogle Scholar
  12. 12.
    Serrador JM, Nieto M, Sanchez-Madrid F (1999) Cytoskeletal rearrangement during migration and activation of T lymphocytes. Trends Cell Biol 9:228–233. doi: 10.1016/S0962-8924(99)01553-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Nethe M, Hordijk PL (2010) The role of ubiquitylation and degradation in RhoGTPase signalling. J Cell Sci 123:4011–4018. doi: 10.1242/jcs.078360 CrossRefPubMedGoogle Scholar
  14. 14.
    Ishizaki H, Togawa A, Tanaka-Okamoto M, Hori K, Nishimura M, Hamaguchi A, Imai T, Takai Y, Miyoshi J (2006) Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. J Immunol 177:8512–8521. doi: 10.4049/jimmunol.177.12.8512 CrossRefPubMedGoogle Scholar
  15. 15.
    Li H, Hou S, Wu X, Nandagopal S, Lin F, Kung S, Marshall AJ (2013) The tandem PH domain-containing protein 2 (TAPP2) regulates chemokine-induced cytoskeletal reorganization and malignant B cell migration. PLoS ONE 8:e57809. doi: 10.1371/journal.pone.0057809 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yamazaki D, Kurisu S, Takenawa T (2009) Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene 28:1570–1583. doi: 10.1038/onc.2009.2 CrossRefPubMedGoogle Scholar
  17. 17.
    Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM, Roccaro AM, Ngo HT, Melhem MR, Sacco A, Jia X, Anderson KC, Lin CP, Rollins BJ, Ghobrial IM (2009) RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 114:619–629. doi: 10.1182/blood-2009-01-199281 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    de la Vega M, Kelvin AA, Dunican DJ, McFarlane C, Burrows JF, Jaworski J, Stevenson NJ, Dib K, Rappoport JZ, Scott CJ, Long A, Johnston JA (2011) The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility. Nat Commun 2:259. doi: 10.1038/ncomms1243 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Worthylake RA, Burridge K (2001) Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Curr Opin Cell Biol 13:569–577. doi: 10.1016/S0955-0674(00)00253-2 CrossRefPubMedGoogle Scholar
  20. 20.
    Insall RH, Machesky LM (2009) Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 17:310–322. doi: 10.1016/j.devcel.2009.08.012 CrossRefPubMedGoogle Scholar
  21. 21.
    van Buul JD, Voermans C, van Gelderen J, Anthony EC, van der Schoot CE, Hordijk PL (2003) Leukocyte-endothelium interaction promotes SDF-1-dependent polarization of CXCR4. J Biol Chem 278:30302–30310. doi: 10.1074/jbc.M304764200 CrossRefPubMedGoogle Scholar
  22. 22.
    Vicente-Manzanares M, Viton M, Sanchez-Madrid F (2004) Measurement of the levels of polymerized actin (F-actin) in chemokine-stimulated lymphocytes and GFP-coupled cDNA transfected lymphoid cells by flow cytometry. Methods Mol Biol 239:53–68PubMedGoogle Scholar
  23. 23.
    Vicente-Manzanares M, Cabrero JR, Rey M, Perez-Martinez M, Ursa A, Itoh K, Sanchez-Madrid F (2002) A role for the Rho-p160 Rho coiled-coil kinase axis in the chemokine stromal cell-derived factor-1alpha-induced lymphocyte actomyosin and microtubular organization and chemotaxis. J Immunol 168:400–410. doi: 10.4049/jimmunol.168.1.400 CrossRefPubMedGoogle Scholar
  24. 24.
    Servotte S, Zhang Z, Lambert CA, Ho TT, Chometon G, Eckes B, Krieg T, Lapiere CM, Nusgens BV, Aumailley M (2006) Establishment of stable human fibroblast cell lines constitutively expressing active Rho-GTPases. Protoplasma 229:215–220. doi: 10.1007/s00709-006-0204-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Louis F, Deroanne C, Nusgens B, Vico L, Guignandon A (2015) RhoGTPases as key players in mammalian cell adaptation to microgravity. Biomed Res Int 2015:747693. doi: 10.1155/2015/747693 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, Esguerra CV, Leung T, Raz E (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–659. doi: 10.1016/S0092-8674(02)01135-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Kim CH, Broxmeyer HE (1999) Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J Leukoc Biol 65:6–15PubMedGoogle Scholar
  28. 28.
    Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114:1150–1157. doi: 10.1182/blood-2009-01-202606 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lataillade JJ, Domenech J, Le Bousse-Kerdiles MC (2004) Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: survival, cell cycling and trafficking. Eur Cytokine Netw 15:177–188PubMedGoogle Scholar
  30. 30.
    Fischer AM, Mercer JC, Iyer A, Ragin MJ, August A (2004) Regulation of CXC chemokine receptor 4-mediated migration by the Tec family tyrosine kinase ITK. J Biol Chem 279:29816–29820. doi: 10.1074/jbc.M312848200 CrossRefPubMedGoogle Scholar
  31. 31.
    Sarmiento C, Wang W, Dovas A, Yamaguchi H, Sidani M, El-Sibai M, Desmarais V, Holman HA, Kitchen S, Backer JM, Alberts A, Condeelis J (2008) WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J Cell Biol 180:1245–1260. doi: 10.1083/jcb.200708123 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim JS, Huang TY, Bokoch GM (2009) Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol Biol Cell 20:2650–2660. doi: 10.1091/mbc.E09-02-0131 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ikoma T, Takahashi T, Nagano S, Li YM, Ohno Y, Ando K, Fujiwara T, Fujiwara H, Kosai K (2004) A definitive role of RhoC in metastasis of orthotopic lung cancer in mice. Clin Cancer Res 10:1192–1200. doi: 10.1158/1078-0432.CCR-03-0275 CrossRefPubMedGoogle Scholar
  34. 34.
    Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535. doi: 10.1038/35020106 CrossRefPubMedGoogle Scholar
  35. 35.
    Gao G, Chen L, Dong B, Gu H, Dong H, Pan Y, Gao Y, Chen X (2009) RhoA effector mDia1 is required for PI 3-kinase-dependent actin remodeling and spreading by thrombin in platelets. Biochem Biophys Res Commun 385:439–444. doi: 10.1016/j.bbrc.2009.05.090 CrossRefPubMedGoogle Scholar
  36. 36.
    Kurokawa K, Itoh RE, Yoshizaki H, Nakamura YO, Matsuda M (2004) Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor. Mol Biol Cell 15:1003–1010. doi: 10.1091/mbc.E03-08-0609 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lammers M, Meyer S, Kuhlmann D, Wittinghofer A (2008) Specificity of interactions between mDia isoforms and Rho proteins. J Biol Chem 283:35236–35246. doi: 10.1074/jbc.M805634200 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huang TY, DerMardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18:26–31. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  39. 39.
    Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C (2008) Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 87:649–667. doi: 10.1016/j.ejcb.2008.04.001 CrossRefPubMedGoogle Scholar
  40. 40.
    Zaoui K, Honore S, Isnardon D, Braguer D, Badache A (2008) Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells. J Cell Biol 183:401–408. doi: 10.1083/jcb.200805107 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim JS, Bak EJ, Lee BC, Kim YS, Park JB, Choi IG (2011) Neuregulin induces HaCaT keratinocyte migration via Rac1-mediated NADPH-oxidase activation. J Cell Physiol 226:3014–3021. doi: 10.1002/jcp.22649 CrossRefPubMedGoogle Scholar
  42. 42.
    Lee CK, Park HJ, So HH, Kim HJ, Lee KS, Choi WS, Lee HM, Won KJ, Yoon TJ, Park TK, Kim B (2006) Proteomic profiling and identification of cofilin responding to oxidative stress in vascular smooth muscle. Proteomics 6:6455–6475. doi: 10.1002/pmic.200600124 CrossRefPubMedGoogle Scholar
  43. 43.
    Li QF, Spinelli AM, Tang DD (2009) Cdc42GAP, reactive oxygen species, and the vimentin network. Am J Physiol Cell Physiol 297:C299–C309. doi: 10.1152/ajpcell.00037.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Park SJ, Kim YT, Jeon YJ (2012) Antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Mol Cells 33:363–369. doi: 10.1007/s10059-012-2285-2 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stanley A, Thompson K, Hynes A, Brakebusch C, Quondamatteo F (2014) NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration. Antioxid Redox Signal 20:2026–2042. doi: 10.1089/ars.2013.5713 CrossRefPubMedGoogle Scholar
  46. 46.
    Kondrikov D, Caldwell RB, Dong Z, Su Y (2011) Reactive oxygen species-dependent RhoA activation mediates collagen synthesis in hyperoxic lung fibrosis. Free Radic Biol Med 50:1689–1698. doi: 10.1016/j.freeradbiomed.2011.03.020 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lyle AN, Deshpande NN, Taniyama Y, Seidel-Rogol B, Pounkova L, Du P, Papaharalambus C, Lassegue B, Griendling KK (2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 105:249–259. doi: 10.1161/CIRCRESAHA.109.193722 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Montezano AC, Callera GE, Yogi A, He Y, Tostes RC, He G, Schiffrin EL, Touyz RM (2008) Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler Thromb Vasc Biol 28:1511–1518. doi: 10.1161/ATVBAHA.108.168021 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Life ScienceShanxi UniversityTaiyuanChina
  2. 2.Department of BioscienceChangchun Normal UniversityChangchunChina
  3. 3.Institute of Genetics and CytologyNortheast Normal UniversityChangchunChina

Personalised recommendations