Skip to main content

Advertisement

Log in

SCARA5 plays a critical role in the progression and metastasis of breast cancer by inactivating the ERK1/2, STAT3, and AKT signaling pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Scavenger receptor class A member 5 (SCARA5) is a candidate anti-oncogene in several malignancies. However, whether SCARA5 is a suppressor gene in breast cancer and its role in breast cancer cell growth and metastasis remain to be determined. Here, we investigated the biological functions of SCARA5 in the progression and metastasis of breast cancer and explored the underlying mechanisms. A total of 65 breast cancer patients and three cell lines (ZR-75-30, MCF-7, and MDA-MB-231) were analyzed in the study. RT-qPCR, western blotting, and immunohistochemistry were used to detect mRNA and protein expression, and lymphatic vessel density (LVD) and microvessel density (MVD). MTT, colony formation, TUNEL assays, invasion assays and Transwell assays, and flow cytometric analyses were used to evaluate the effect of SCARA5 on breast cancer cells. SCARA5 was significantly downregulated in breast cancer tissues and cells and significantly correlated with tumor size, histological grade, lymph node metastasis, pTNM stage, VEGF-A, VEGF-C, LVD, and MVD. SCARA5 overexpression significantly suppressed cell proliferation, colony formation, invasion, and migration, and induced G0/G1 arrest and apoptosis of ZR-75-30 cells. SCARA5 decreased the phosphorylation of ERK1/2, AKT, and STAT3, and downregulated downstream signaling effectors, including MMP-2, 3, and 9, VEGF-A, VEGF-C, Bax, Cyclin B1, Cyclin D1, and Cyclin E1, and upregulated E-cadherin, Bcl-2, and caspase 3. SCARA5 is associated with multiple signaling pathways and plays a critical role in the progression and metastasis of breast cancer. The present results provide the first evidence that SCARA5 inhibits lymphangiogenesis by downregulating VEGF-C, thereby inhibiting breast cancer lymphatic metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parrella P (2010) Epigenetic signatures in breast cancer: clinical perspective. Breast Care 5:66–73

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saad ED, Katz A, Buyse M (2010) Overall survival and post-progression survival in advanced breast cancer: a review of recent randomized clinical trials. J Clin Oncol 28:1958–1962

    Article  PubMed  Google Scholar 

  3. Gotay CC, Kawamoto CT, Bottomley A, Efficace F (2008) The prognostic significance of patient-reported outcomes in cancer clinical trials. J Clin Oncol 26:1355–1363

    Article  PubMed  Google Scholar 

  4. Armengol C, Bartolí R, Sanjurjo L et al (2013) Role of scavenger receptors in the pathophysiology of chronic liver diseases. Crit Rev Immunol 33:57–96

    CAS  PubMed  Google Scholar 

  5. Peiser L, Gordon S (2002) The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect 3:149–159

    Article  Google Scholar 

  6. Whelan FJ, Meehan CJ, Golding GB, McConkey BJ, Bowdish DM (2012) The evolution of the class A scavenger receptors. BMC Evol Biol 12:227

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  CAS  PubMed  Google Scholar 

  8. Li JY, Paragas N, Ned RM et al (2009) Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell 16:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang J, Zheng DL, Qin FS et al (2010) Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling. J Clin Invest 120:223–241

    Article  CAS  PubMed  Google Scholar 

  10. Yan N, Zhang S, Yang Y et al (2012) Therapeutic upregulation of Class A scavenger receptor member 5 inhibits tumor growth and metastasis. Cancer Sci 103:1631–1639

    Article  CAS  PubMed  Google Scholar 

  11. Wen X, Wang N, Zhang F, Dong C (2016) Overexpression of SCARA5 inhibits tumor proliferation and invasion in osteosarcoma via suppression of the FAK signaling pathway. Mol Med Rep 13:2885–2891

    Article  CAS  PubMed  Google Scholar 

  12. Hu J, Cheng Y, Li Y et al (2014) microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer 50:2336–2350

    Article  CAS  PubMed  Google Scholar 

  13. Park YL, Myung E, Park SY et al (2015) Impact of prospero homeobox-1 on tumor cell behavior and prognosis in colorectal cancer. Am J Cancer Res 5:3286–3300

    PubMed  PubMed Central  Google Scholar 

  14. Hwang A, McKenna WG, Muschel RJ (1998) Cell cycle-dependent usage of transcriptional start sites. A novel mechanism for regulation of cyclin B1. J Biol Chem 273:31505–31509

    Article  CAS  PubMed  Google Scholar 

  15. Quelle DE, Ashmun RA (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7:1559–1571

    Article  CAS  PubMed  Google Scholar 

  16. Ewen ME, Lamb J (2004) The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med 10:158–162

    Article  CAS  PubMed  Google Scholar 

  17. Arnold A, Papanikolaou A (2005) Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 23:4215–4224

    Article  CAS  PubMed  Google Scholar 

  18. Nahta R, Esteva FJ (2003) Bcl-2 antisense oligonucleotides: a potential novel strategy for the treatment of breast cancer. Semin Oncol 30:143–149

    Article  CAS  PubMed  Google Scholar 

  19. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178–194

    Article  PubMed  Google Scholar 

  20. Kymionis GD, Dimitrakakis CE, Konstadoulakis MM et al (2001) Can expression of apoptosis genes, bcl-2 and bax, predict survival and responsiveness to chemotherapy in node-negative breast cancer patients? J Surg Res 99:161–168

    Article  CAS  PubMed  Google Scholar 

  21. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  23. Salvesen GS (2002) Caspases opening the boxes and interpreting the arrows. Cell Death Differ 9:3–5

    Article  PubMed  Google Scholar 

  24. Ghavami S, Hashemi M, Ande SR et al (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46:497–510

    Article  CAS  PubMed  Google Scholar 

  25. Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270

    Article  CAS  PubMed  Google Scholar 

  26. Bussemakers MJ, van Moorselaar RJ, Giroldi LA et al (1992) Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 52:2916–2922

    CAS  PubMed  Google Scholar 

  27. Mittal K, Ebos J, Rini B (2014) Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin Oncol 41:235–251

    Article  CAS  PubMed  Google Scholar 

  28. Gomes FG, Nedel F, Alves AM, Nör JE, Tarquinio SB (2013) Tumor angiogenesis and lymphangiogenesis: tumor endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci 92:101–107

    Article  CAS  PubMed  Google Scholar 

  29. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14:159–172

    Article  CAS  PubMed  Google Scholar 

  30. Teng Y, Ross JL, Cowell JK (2014) The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAKSTAT 3:e28086

    PubMed  PubMed Central  Google Scholar 

  31. Zhang P, Guo X, Li J et al (2015) Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 6:13550–13563

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen H, Guan R, Lei Y et al (2015) Lymphangiogenesis in Gastric Cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis. BMC Cancer 15:103

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gong W, Wang L, Yao JC et al (2005) Expression of activated signal transducer and activator of transcription 3 predicts expression of vascular endothelial growth factor in and angiogenic phenotype of human gastric cancer. Clin Cancer Res 11:1386–1393

    Article  CAS  PubMed  Google Scholar 

  34. Groner B, Lucks P, Borghouts C (2008) The function of Stat3 in tumor cells and their microenvironment. Semin Cell Dev Biol 19:341–350

    Article  CAS  PubMed  Google Scholar 

  35. Xie TX, Huang FJ, Aldape KD et al (2006) Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 66:3188–3196

    Article  CAS  PubMed  Google Scholar 

  36. Niu G, Wright KL, Huang M et al (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000–2008

    Article  CAS  PubMed  Google Scholar 

  37. Wei D, Le X, Zheng L et al (2003) Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22:319–329

    Article  CAS  PubMed  Google Scholar 

  38. Yahata Y, Shirakata Y, Tokumaru S et al (2003) Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J Biol Chem 278:40026–40031

    Article  CAS  PubMed  Google Scholar 

  39. Hu D, Fukuhara A, Miyata Y et al (2013) Adiponectin regulates vascular endothelial growth factor-C expression in macrophages via Syk-ERK pathway. PLoS ONE 8:e56071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and National Natural Science Foundation of China (Grant No. 81372838).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yafang Zhang or Baoquan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, K., Su, F., Liu, L. et al. SCARA5 plays a critical role in the progression and metastasis of breast cancer by inactivating the ERK1/2, STAT3, and AKT signaling pathways. Mol Cell Biochem 435, 47–58 (2017). https://doi.org/10.1007/s11010-017-3055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3055-4

Keywords

Navigation