Skip to main content

Advertisement

Log in

RIP1-dependent reactive oxygen species production executes artesunate-induced cell death in renal carcinoma Caki cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Artesunate is a well-known anti-malarial drug originated from artemisinin as a Chinese herb and has been reported to have anti-cancer potential in many cancer cells. In the present study, we examined the efficacy of artesunate against the renal carcinoma Caki cells and explored its mechanism of cytotoxicity. A steep decline in cell viability within 18 h was recorded upon artesunate exposure, but pretreatment of z-VAD-FMK had no effect on the loss of the cell viability by artesunate. On the other hand, necrostatin-1 pretreatment and knockdown of RIP-1 significantly reduced the cytotoxicity of artesunate against Caki cell. Moreover, the generation of mitochondrial ROS prompted by artesunate was found to be the principle mechanism of cell death. Pretreatment with necrostatin-1 or knockdown of RIP-1 inhibited the generation of ROS by artesunate, resulting in the protection of the cells from artesunate toxicity. Moreover, the similar results were observed in the case of other renal carcinoma cell lines (ACHN and A498). The results suggest that artesunate induces the generation of ROS and cell death in RIP1-dependent manner. Therefore, our data suggest that artesunate could induce RIP1-dependent cell death in human renal carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Capitanio U, Montorsi F (2016) Renal cancer. Lancet 387:894–906

    Article  PubMed  Google Scholar 

  2. Jonasch E, Gao J, Rathmell WK (2014) Renal cell carcinoma. BMJ 349:g4797–g4808

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cohen HT, McGovern FJ (2005) Renal-cell carcinoma. N Engl J Med 353:2477–2490

    Article  CAS  PubMed  Google Scholar 

  4. Stukalin I, Alimohamed N, Heng DY (2016) Contemporary treatment of metastatic renal cell carcinoma. Oncol Rev 10:295–303

    Article  PubMed  PubMed Central  Google Scholar 

  5. Su D, Stamatakis L, Singer EA, Srinivasan R (2014) Renal cell carcinoma: molecular biology and targeted therapy. Curr Opin Oncol 26:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  7. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, Zarba JJ, Chen M, McCann L, Pandite L, Roychowdhury DF, Hawkins RE (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28:1061–1068

    Article  CAS  PubMed  Google Scholar 

  8. Juengel E, Kim D, Makarevic J, Reiter M, Tsaur I, Bartsch G, Haferkamp A, Blaheta RA (2015) Molecular analysis of sunitinib resistant renal cell carcinoma cells after sequential treatment with RAD001 (everolimus) or sorafenib. J Cell Mol Med 19:430–441

    Article  CAS  PubMed  Google Scholar 

  9. Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, Nathan P, Staehler M, de Souza P, Merchan JR, Boleti E, Fife K, Jin J, Jones R, Uemura H, De Giorgi U, Harmenberg U, Wang J, Sternberg CN, Deen K, McCann L, Hackshaw MD, Crescenzo R, Pandite LN, Choueiri TK (2013) Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369:722–731

    Article  CAS  PubMed  Google Scholar 

  10. Zhang D, Lin J, Han J (2010) Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol 7:243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81:513–523

    Article  CAS  PubMed  Google Scholar 

  12. Kim JY, Morgan M, Kim DG, Lee JY, Bai L, Lin Y, Liu ZG, Kim YS (2011) TNFalpha induced noncanonical NF-kappaB activation is attenuated by RIP1 through stabilization of TRAF2. J Cell Sci 124:647–656

    Article  CAS  PubMed  Google Scholar 

  13. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  CAS  PubMed  Google Scholar 

  14. Papatriantafyllou M (2012) Cell signalling: a necrosome build-up. Nat Rev Mol Cell Biol 13:540

    CAS  PubMed  Google Scholar 

  15. O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin—the debate continues. Molecules 15:1705–1721

    Article  PubMed  Google Scholar 

  16. Posner GH, O’Neill PM (2004) Knowledge of the proposed chemical mechanism of action and cytochrome p450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. Acc Chem Res 37:397–404

    Article  CAS  PubMed  Google Scholar 

  17. Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan KS, Wong WS, Shen HM (2014) Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem 289:33425–33441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Button RW, Lin F, Ercolano E, Vincent JH, Hu B, Hanemann CO, Luo S (2014) Artesunate induces necrotic cell death in schwannoma cells. Cell Death Dis 5:e1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, Efferth T, Eils R, Brady NR (2011) Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem 286:6587–6601

    Article  CAS  PubMed  Google Scholar 

  20. Eom SA, Kim DW, Shin MJ, Ahn EH, Chung SY, Sohn EJ, Jo HS, Jeon SJ, Kim DS, Kwon HY, Cho SW, Han KH, Park J, Eum WS, Choi SY (2015) Protective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson’s disease. BMB Rep 48:395–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim HB, Yoo BS (2016) Propolis inhibits UVA-induced apoptosis of human keratinocyte HaCaT cells by scavenging ROS. Toxicol Res 32:345–351

    Article  PubMed  PubMed Central  Google Scholar 

  22. Woerdenbag HJ, Moskal TA, Pras N, Malingre TM, El-Feraly FS, Kampinga HH, Konings AW (1993) Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod 56:849–856

    Article  CAS  PubMed  Google Scholar 

  23. Pang Y, Qin G, Wu L, Wang X, Chen T (2016) Artesunate induces ROS-dependent apoptosis via a Bax-mediated intrinsic pathway in Huh-7 and Hep3B cells. Exp Cell Res 347:251–260

    Article  CAS  PubMed  Google Scholar 

  24. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985

    CAS  PubMed  Google Scholar 

  25. Chaitanya GV, Steven AJ, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320

    Article  CAS  PubMed  Google Scholar 

  27. Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M (2007) Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS ONE 2:e693

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ye YC, Wang HJ, Yu L, Tashiro S, Onodera S, Ikejima T (2012) RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy. Int Immunopharmacol 14:674–682

    Article  CAS  PubMed  Google Scholar 

  29. Schenk B, Fulda S (2015) Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene 34:5796–5806

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an NRF grant funded by the Korea Government (MSIP) (2014R1A5A2010008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeg Kyu Kwon.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A.K., Min, Kj. & Kwon, T.K. RIP1-dependent reactive oxygen species production executes artesunate-induced cell death in renal carcinoma Caki cells. Mol Cell Biochem 435, 15–24 (2017). https://doi.org/10.1007/s11010-017-3052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3052-7

Keywords

Navigation