Skip to main content
Log in

Peroxisomes proliferation and pharmacological stimulation of autophagy in rat liver: evidence to support that autophagy may remove the “older” peroxisomes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Like mitochondria, peroxisomes produce reactive oxygen species (ROS), compounds which have been implicated to play an important role in many degenerative diseases and aging itself, and an exaggerated ROS production might occur in altered or older organelles. Growing evidence shows that autophagy, a required function in cell housekeeping during fasting, can remove damaged macromolecules, organelles, and membranes selectively. Proliferation of peroxisomes can be enhanced in liver cells by perfluorooctanoic acid (PFOA), which causes a marked increase of the Acyl-CoA oxidase (ACOX) activity and no significant change in urate oxidase (UOX) activity. The administration of antilipolytic drugs to fasted animals was shown to intensify autophagy. Here we tested the hypothesis that autophagy may distinguish and remove older from younger peroxisomes in rat liver. Male Sprague-Dawley rats were given PFOA (150 mg/kg body weight) or vehicle. Animals were sacrificed at different times following PFOA administration, and 3 h after the induction of autophagy with the antilipolytic agent 3,5-dimethyl pyrazole (DMP, 12 mg/kg body weight). The levels of ACOX and UOX activity were measured in the liver tissue. Results showed that autophagy caused a parallel, significant decrease in both enzymes activity in control rats, and that in PFOA-treated rats the effects were different and changed with PFOA time administration. Changes are compatible with the hypothesis that newly formed ACOX-rich peroxisomes are resistant to pexophagy and that sensitivity to pexophagy increases with increasing peroxisomal “age.” In conclusion, there is indirect evidence supporting the hypothesis that autophagy may recognize and degrade older peroxisomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    Article  CAS  PubMed  Google Scholar 

  2. Pomatto LC, Raynes R, Davies KJ (2016) The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc. doi:10.1111/brv.12253

    PubMed  PubMed Central  Google Scholar 

  3. Titorenko VI, Terlecky SR (2011) Peroxisome metabolism and cellular aging. Traffic 12:252–259

    Article  CAS  PubMed  Google Scholar 

  4. Yang Z, Klionsky DJ (2010) Eaten alive. A history of macroautophagy. Nat Cell Biol 12:814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hubbard VM, Valdor R, Macian F, Cuervo AM (2012) Selective autophagy in the maintenance of cellular homeostasis in aging organism. Biogerontology 13:21–35

    Article  PubMed  Google Scholar 

  6. Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72

    Article  CAS  Google Scholar 

  7. Cavallini G, Donati A, Taddei M, Bergamini E (2007) Evidence for selective mitochondrial autophagy and failure in aging. Autophagy 3:26–27

    Article  CAS  PubMed  Google Scholar 

  8. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oku M, Sakai Y (2016) Pexophagy in yeasts. Biochim Biophys Acta 1863:992–998

    Article  CAS  PubMed  Google Scholar 

  10. Honsho M, Yamashita SI, Fujiki Y (2016) Peroxisome homeostasis: mechanisms of division and selective degradation of peroxisomes in mammals. Biochim Biophys Acta 1863:984–991

    Article  CAS  PubMed  Google Scholar 

  11. Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137:547–574

    Article  CAS  PubMed  Google Scholar 

  13. Kim PK, Mullen RT, Schumann U, Lippincott-Schwartz J (2006) The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J Cell Biol 173:521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crane DI, Zamattia J, Masters CJ (1990) Alterations in the integrity of peroxisomal membranes in livers of mice treated with peroxisome proliferators. Mol Cell Biochem 96:153–161

    Article  CAS  PubMed  Google Scholar 

  15. Youssef J, Badr M (1997) Activated Kupffer cells attenuate the liver response to the peroxisome proliferator perfluorooctanoic acid. Mol Cell Biochem 169:143–147

    Article  CAS  PubMed  Google Scholar 

  16. Abdellatif AG, Préat V, Vamecq J, Nilsson R, Roberfroid M (1990) Peroxisome proliferation and modulation of rat liver carcinogenesis by 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, perfluorooctanoic acid and nafenopin. Carcinogenesis 11:1899–1902

    Article  CAS  PubMed  Google Scholar 

  17. Flatmark T, Christiansen EN, Kryvi H (1981) Polydispersity of rat liver peroxisomes induced by the hypolipidemic and carcinogenic agent clofibrate. Eur J Cell Biol 24:62–69

    CAS  PubMed  Google Scholar 

  18. Kim J, Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303–342

    Article  CAS  PubMed  Google Scholar 

  19. Locci Cubeddu T, Masiello P, Pollera M, Bergamini E (1985) Effects of antilipolytic agents on rat liver peroxisomes and peroxisomal oxidative activities. Biochim Biophys Acta 839:96–104

    Article  CAS  PubMed  Google Scholar 

  20. Donati A, Cavallini G, Bergamini E (2009) Methods for inducing and monitoring liver autophagy relative to aging and antiaging caloric restriction in rats. Methods Enzymol 452:441–455

    Article  CAS  PubMed  Google Scholar 

  21. Badr MZ, Birnbaum LS (2004) Enhanced potential for oxidative stress in livers of senescent rats by the peroxisome proliferator-activated receptor alpha agonist perfluorooctanoic acid. Mech Ageing Dev 125:69–75

    Article  CAS  PubMed  Google Scholar 

  22. Pfeifer U (1978) Inhibition by insulin of the formation of autophagic vacuoles in rat liver. A morphometric approach to the kinetics of intracellular degradation by autophagy. J Cell Biol 78:152–167

    Article  CAS  PubMed  Google Scholar 

  23. Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 73:2043–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Inestrosa NC, Bronfman M, Leighton F (1979) Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem J 182:779–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hayashi H, Suga T, Niinobe S (1971) Studies on peroxisomes. I. Intraparticulate localization of peroxisomal enzymes in rat liver. Biochim Biophys Acta 252:58–68

    Article  CAS  PubMed  Google Scholar 

  26. Knuppertz L, Osiewacz HD (2016) Orchestrating the network of molecular pathways affecting aging: role of nonselective autophagy and mitophagy. Mech Ageing Dev 153:30–40

    Article  CAS  PubMed  Google Scholar 

  27. Till A, Lakhani R, Burnett SF, Subramani S (2012) Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012:512721

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, Bielawski J, Ogretmen B (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8:831–838. (Erratum in: (2012) Nat Chem Biol 8:1008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santos RX, Correia SC, Alves MG, Oliveira PF, Cardoso S, Carvalho C, Seiça R, Santos MS, Moreira PI (2014) Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes. Mol Cell Biochem 394:13–22

    Article  CAS  PubMed  Google Scholar 

  30. Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K, Kominami E (2006) Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 281:4035–4041

    Article  CAS  PubMed  Google Scholar 

  31. Yokota S, Dariush Fahimi H (2009) Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochem Cell Biol 131:455–458

    Article  CAS  PubMed  Google Scholar 

  32. Donati A, Ventruti A, Cavallini G, Masini M, Vittorini S, Chantret I, Codogno P, Bergamini E (2008) In vivo effect of an antilipolytic drug (3,5′-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver. Biochem Biophys Res Commun 366:786–792

    Article  CAS  PubMed  Google Scholar 

  33. Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV, Fransen M (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10:1722–1733

    Article  CAS  PubMed  Google Scholar 

  34. Pan J, Pan X, Wang N, Ghazizadeh M, Yeldandi A (2005) Characterization of the degradation of recombinant rat urate oxidase in tetracycline controlled gene expression cells. J Electron Microsc (Tokyo) 54:385–392

    Article  CAS  Google Scholar 

  35. Kudo N, Suzuki-Nakajima E, Mitsumoto A, Kawashima Y (2006) Responses of the liver to perfluorinated fatty acids with different carbon chain length in male and female mice: in relation to induction of hepatomegaly, peroxisomal beta-oxidation and microsomal 1-acylglycerophosphocholine acyltransferase. Biol Pharm Bull 29:1952–1957

    Article  CAS  PubMed  Google Scholar 

  36. van Zutphen T, Veenhuis M, van der Klei IJ (2001) Damaged peroxisomes are subject to rapid autophagic degradation in the yeast Hansenula polymorpha. Autophagy 7:863–872

    Article  Google Scholar 

  37. Schönenberger MJ, Krek W, Kovacs WJ (2015) EPAS1/HIF-2α is a driver of mammalian pexophagy. Autophagy 11:967–969

    Article  PubMed  PubMed Central  Google Scholar 

  38. Donati A, Cavallini G, Carresi C, Gori Z, Parentini I, Bergamini E (2004) Anti-aging effects of anti-lipolytic drugs. Exp Gerontol 39:1061–1067

    Article  CAS  PubMed  Google Scholar 

  39. Erdmann R (2016) Assembly, maintenance and dynamics of peroxisomes. Biochim Biophys Acta 1863:787–789

    Article  CAS  PubMed  Google Scholar 

  40. Schrader M, Godinho LF, Costello JL, Islinger M (2015) The different facets of organelle interplay-an overview of organelle interactions. Front Cell Dev Biol 3:56

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang B, Van Veldhoven PP, Brees C, Rubio N, Nordgren M, Apanasets O, Kunze M, Baes M, Agostinis P, Fransen M (2013) Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 65:882–894

    Article  CAS  PubMed  Google Scholar 

  42. López-Erauskin J, Galino J, Ruiz M, Cuezva JM, Fabregat I, Cacabelos D, Boada J, Martínez J, Ferrer I, Pamplona R, Villarroya F, Portero-Otín M, Fourcade S, Pujol A (2013) Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet 22:3296–3305

    Article  PubMed  Google Scholar 

  43. Cavallini G, Donati A, Capasso B, Fella M, Leone V, Pezzella G, Romano GC, Vagali A, Bergamini E (2014) Effects of stimulation of autophagy on the urinary excretion of biomarkers of the oxidative status. Aging Clin Exp Res 26:13–18

    Article  PubMed  Google Scholar 

  44. Montecucco F, Bertolotto M, Vuilleumier N, Franciosi U, Puddu A, Minetti S, Delrio A, Quercioli A, Bergamini E, Ottonello L, Pende A, Lenglet S, Pelli G, Mach F, Dallegri F, Viviani GL (2011) Acipimox reduces circulating levels of insulin and associated neutrophilic inflammation in metabolic syndrome. Am J Physiol Endocrinol Metab 300:E681–E690

    Article  CAS  PubMed  Google Scholar 

  45. Waterham HR, Ferdinandusse S, Wanders RJ (2016) Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 1863:922–933

    Article  CAS  PubMed  Google Scholar 

  46. Wanders RJ (2014) Metabolic functions of peroxisomes in health and disease. Biochimie 98:36–44

    Article  CAS  PubMed  Google Scholar 

  47. Fransen M, Nordgren M, Wang B, Apanasets O, Van Veldhoven PP (2013) Aging, age-related diseases and peroxisomes. Subcell Biochem 69:45–65

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Cavallini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallini, G., Donati, A., Taddei, M. et al. Peroxisomes proliferation and pharmacological stimulation of autophagy in rat liver: evidence to support that autophagy may remove the “older” peroxisomes. Mol Cell Biochem 431, 97–102 (2017). https://doi.org/10.1007/s11010-017-2979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2979-z

Keywords

Navigation