Skip to main content
Log in

Ubiquitin-specific protease 14 regulates LPS-induced inflammation by increasing ERK1/2 phosphorylation and NF-κB activation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Persistent activation of nuclear factor B (NF-κB) is very important in the modulation of macrophages cellular response to microbial infections. The deubiquitinase USP14, which is critical for ubiquitin-mediated proteasomal degradation of proteins, is known to be involved in cancer, neurological diseases, and aging. However, the mechanism by which USP14 regulates inflammation remains unclear. Here, we demonstrated that decreasing the deubiquitinase activity of USP14 resulted in reduced lipopolysaccharides (LPS)-mediated tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 release in THP-1 and RAW264.7 cells. Meanwhile, USP14 knockdown by siRNA showed the same effects, with no cytotoxicity in THP-1 cells. Moreover, inhibiting the deubiquitinase activity of USP14 or USP14 knockdown resulted in decreased ERK1/2 and IκBα phosphorylation, increased amounts of the NF-κB inhibitor IκBα, and reduced NF-κB p65 transport from the cytoplasm into nucleus. These findings suggested that USP14 induces NF-κB activity and ERK1/2 phosphorylation triggered by microbial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leyva-Lopez N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB (2016) Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. Int J Mol Sci 17:921

    Article  PubMed Central  Google Scholar 

  2. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  3. Carmody RJ, Chen YH (2007) Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling. Cell Mol Immunol 4:31–41

    CAS  PubMed  Google Scholar 

  4. Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Solt LA, May MJ (2008) The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42:3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    Article  CAS  PubMed  Google Scholar 

  7. Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692

    Article  CAS  PubMed  Google Scholar 

  8. Paunovic V, Harnett MM (2013) Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs 73:101–115

    Article  CAS  PubMed  Google Scholar 

  9. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807

    Article  CAS  PubMed  Google Scholar 

  10. Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223

    Article  CAS  PubMed  Google Scholar 

  11. D’Arcy P, Brnjic S, Olofsson MH, Fryknas M, Lindsten K, De Cesare M, Perego P, Sadeghi B, Hassan M, Larsson R, Linder S (2011) Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 17:1636–1640

    Article  PubMed  Google Scholar 

  12. Liu N, Li X, Huang H, Zhao C, Liao S, Yang C, Liu S, Song W, Lu X, Lan X, Chen X, Yi S, Xu L, Jiang L, Zhao C, Dong X, Zhou P, Li S, Wang S, Shi X, Dou PQ, Wang X, Liu J (2014) Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget 5:5453–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99–111

    Article  CAS  PubMed  Google Scholar 

  14. Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558

    Article  CAS  PubMed  Google Scholar 

  15. Jung H, Kim BG, Han WH, Lee JH, Cho JY, Park WS, Maurice MM, Han JK, Lee MJ, Finley D, Jho EH (2013) Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis 2:e64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nag DK, Finley D (2012) A small-molecule inhibitor of deubiquitinating enzyme USP14 inhibits dengue virus replication. Virus Res 165:103–106

    Article  CAS  PubMed  Google Scholar 

  17. Hyrskyluoto A, Bruelle C, Lundh SH, Do HT, Kivinen J, Rappou E, Reijonen S, Waltimo T, Petersen A, Lindholm D, Korhonen L (2014) Ubiquitin-specific protease-14 reduces cellular aggregates and protects against mutant huntingtin-induced cell degeneration: involvement of the proteasome and ER stress-activated kinase IRE1alpha. Hum Mol Genet 23:5928–5939

    Article  CAS  PubMed  Google Scholar 

  18. Wu N, Liu C, Bai C, Han YP, Cho WC, Li Q (2013) Over-expression of deubiquitinating enzyme USP14 in lung adenocarcinoma promotes proliferation through the accumulation of beta-catenin. Int J Mol Sci 14:10749–10760

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tian Z, D’Arcy P, Wang X, Ray A, Tai YT, Hu Y, Carrasco RD, Richardson P, Linder S, Chauhan D, Anderson KC (2014) A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123:706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shinji S, Naito Z, Ishiwata S, Ishiwata T, Tanaka N, Furukawa K, Suzuki H, Seya T, Matsuda A, Katsuta M, Tajiri T (2006) Ubiquitin-specific protease 14 expression in colorectal cancer is associated with liver and lymph node metastases. Oncol Rep 15:539–543

    CAS  PubMed  Google Scholar 

  21. Liu N, Chai R, Liu B, Zhang Z, Zhang S, Zhang J, Liao Y, Cai J, Xia X, Li A, Liu J, Huang H, Liu S (2016) Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3beta phosphorylation. Biochem Biophys Res Commun 478:1236–1241

    Article  CAS  PubMed  Google Scholar 

  22. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179

    Article  CAS  PubMed  Google Scholar 

  23. Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH (2007) Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science 317:675–678

    Article  CAS  PubMed  Google Scholar 

  24. Colleran A, Collins PE, O’Carroll C, Ahmed A, Mao X, McManus B, Kiely PA, Burstein E, Carmody RJ (2013) Deubiquitination of NF-kappaB by Ubiquitin-Specific Protease-7 promotes transcription. Proc Natl Acad Sci U S A 110:618–623

    Article  CAS  PubMed  Google Scholar 

  25. Maine GN, Mao X, Komarck CM, Burstein E (2007) COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. EMBO J 26:436–447

    Article  CAS  PubMed  Google Scholar 

  26. Saccani S, Marazzi I, Beg AA, Natoli G (2004) Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor kappaB response. J Exp Med 200:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brouwers H, von Hegedus J, Toes R, Kloppenburg M, Ioan-Facsinay A (2015) Lipid mediators of inflammation in rheumatoid arthritis and osteoarthritis. Best Pract Res Clin Rheumatol 29:741–755

    Article  PubMed  Google Scholar 

  28. Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119:91–112

    Article  CAS  PubMed  Google Scholar 

  29. Robb CT, Regan KH, Dorward DA, Rossi AG (2016) Key mechanisms governing resolution of lung inflammation. Semin Immunopathol 38:425–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin YN, Chen PC, Watson JA, Walters BJ, Phillips SE, Green K, Schmidt R, Wilson JA, Johnson GV, Roberson ED, Dobrunz LE, Wilson SM (2012) Usp14 deficiency increases tau phosphorylation without altering tau degradation or causing tau-dependent deficits. PLoS ONE 7:e47884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mialki RK, Zhao J, Wei J, Mallampalli DF, Zhao Y (2013) Overexpression of USP14 protease reduces I-kappaB protein levels and increases cytokine release in lung epithelial cells. J Biol Chem 288:15437–15441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81400231), Pearl River S&T Nova Program of Guangzhou (No. 201506010071) General Project (1201420465) from Guangzhou Education Commission, the Science and Technology Planning Project of Guangdong Province, China (2014A020221059), Guangzhou Medical and health science and technology project (20141A011079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuming Xiong or Zhenhui Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Ningning Liu, Tianyu Kong and Xiaohua Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Kong, T., Chen, X. et al. Ubiquitin-specific protease 14 regulates LPS-induced inflammation by increasing ERK1/2 phosphorylation and NF-κB activation. Mol Cell Biochem 431, 87–96 (2017). https://doi.org/10.1007/s11010-017-2978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2978-0

Keywords

Navigation