Skip to main content

Advertisement

Log in

Identifying and characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study was aimed at characterising the PPE7 protein from the PE/PPE protein family. The presence and transcription of the rv0354c gene in the Mycobacterium tuberculosis complex was determined and the subcellular localisation of the PPE7 protein on mycobacterial membrane was confirmed by immunoelectron microscope. Two peptides were identified as having high binding activity (HABPs) and were tested in vitro regarding the invasion of Mycobacterium tuberculosis H37Rv. HABP 39224 inhibited invasion in A549 epithelial cells and U937 macrophages by more than 50%, whilst HABP 39225 inhibited invasion by 40% in U937 cells. HABP 39224, located in the protein’s C-terminal region, has a completely conserved amino acid sequence in M. tuberculosis complex species and could be selected as a base peptide when designing a subunit-based, anti-tuberculosis vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO (2016) Global tuberculosis report 2016. World Health Organization, Geneva

    Google Scholar 

  2. Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S, Eiglmeier K, Gas S, Barry CR (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  3. van Pittius NCG, Sampson SL, Lee H, Kim Y, Van Helden PD, Warren RM (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6:95

    Article  Google Scholar 

  4. Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE (2012) The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more? Biochimie 94:110–116

    Article  CAS  PubMed  Google Scholar 

  5. Rindi L, Lari N, Garzelli C (1999) Search for genes potentially involved in Mycobacterium tuberculosis virulence by mRNA differential display. Biochem Biophys Res Commun 258:94–101

    Article  CAS  PubMed  Google Scholar 

  6. Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW, Jiménez C, Parra M, Cadieux N, Brennan MJ, Appelmelk BJ (2009) PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol 73:329–340

    Article  CAS  PubMed  Google Scholar 

  7. Sampson S, Lukey P, Warren R, van Helden P, Richardson M, Everett M (2001) Expression, characterization and subcellular localization of the Mycobacterium tuberculosis PPE gene Rv1917c. Tuberculosis 81:305–317

    Article  CAS  PubMed  Google Scholar 

  8. Sani M, Houben E, Geurtsen J, Pierson J, de Punder K, van Zon M, Wever B, Piersma SR, Jiménez CR, Daffé M (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6:e1000794

    Article  PubMed  PubMed Central  Google Scholar 

  9. Demangel C, Brodin P, Cockle PJ, Brosch R, Majlessi L, Leclerc C, Cole ST (2004) Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-kilodalton culture filtrate protein and ESAT-6. Infect Immun 72:2170–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Le Moigne V, Robreau G, Borot C, Guesdon J-L, Mahana W (2005) Expression, immunochemical characterization and localization of the Mycobacterium tuberculosis protein p27. Tuberculosis 85:213–219

    Article  CAS  PubMed  Google Scholar 

  11. Diaz DP, Ocampo M, Pabon L, Herrera C, Patarroyo MA, Munoz M, Patarroyo ME (2016) Mycobacterium tuberculosis PE9 protein has high activity binding peptides which inhibit target cell invasion. Int J Biol Macromol 86:646–655. doi:10.1016/j.ijbiomac.2015.12.081

    Article  CAS  PubMed  Google Scholar 

  12. Nair S, Ramaswamy PA, Ghosh S, Joshi DC, Pathak N, Siddiqui I, Sharma P, Hasnain SE, Mande SC, Mukhopadhyay S (2009) The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. J Immunol 183:6269–6281

    Article  CAS  PubMed  Google Scholar 

  13. Tiwari B, Ramakrishnan UM, Raghunand TR (2015) The Mycobacterium tuberculosis protein pair PE9 (Rv1088)–PE10 (Rv1089) forms heterodimers and induces macrophage apoptosis through Toll-like receptor 4. Cell Microbiol 17:1653–1669

    Article  CAS  PubMed  Google Scholar 

  14. Bansal K, Sinha AY, Ghorpade DS, Togarsimalemath SK, Patil SA, Kaveri SV, Balaji KN, Bayry J (2010) Src homology 3-interacting domain of Rv1917c of Mycobacterium tuberculosis induces selective maturation of human dendritic cells by regulating PI3K-MAPK-NF-κB signaling and drives Th2 immune responses. J Biol Chem 285:36511–36522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bansal K, Elluru SR, Narayana Y, Chaturvedi R, Patil SA, Kaveri SV, Bayry J, Balaji KN (2010) PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. J Immunol 184:3495–3504

    Article  CAS  PubMed  Google Scholar 

  16. Patarroyo ME, Bermudez A, Patarroyo MA (2011) Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chem Rev 111:3459–3507

    Article  CAS  PubMed  Google Scholar 

  17. Ocampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME (2014) Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Crit Rev Microbiol 40:117–145

    Article  CAS  PubMed  Google Scholar 

  18. Kruh N, Troudt J, Izzo A, Prenni J, Dobos K, Aziz RK (2010) Portrait of a pathogen: The Mycobacterium tuberculosis Proteome. Vivo. PLoS One 5:e13938

    Article  PubMed  PubMed Central  Google Scholar 

  19. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    Article  CAS  PubMed  Google Scholar 

  20. Kohli S, Singh Y, Sharma K, Mittal A, Ehtesham NZ, Hasnain SE (2012) Comparative genomic and proteomic analyses of PE/PPE multigene family of Mycobacterium tuberculosis H37Rv and H37Ra reveal novel and interesting differences with implications in virulence. Nucleic Acids Res 40:7113–7122. doi:10.1093/nar/gks465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boratyn GM, Schaffer A, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nancy YY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  Google Scholar 

  23. Shen H-B, Chou K-C (2009) Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of Gram-positive bacterial proteins. Protein Pept Lett 16:1478–1484

    Article  CAS  PubMed  Google Scholar 

  24. Szafron D, Lu P, Greiner R, Wishart DS, Poulin B, Eisner R, Lu Z, Anvik J, Macdonell C, Fyshe A (2004) Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Res 32:W365–W371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rashid M, Saha S, Raghava GP (2007) Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinform 8:337

    Article  Google Scholar 

  26. Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  27. Käll L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35:W429–W432

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Ismb 6: 175–182

    CAS  PubMed  Google Scholar 

  29. Pasquier C, Promponas V, Palaios G, Hamodrakas J, Hamodrakas S (1999) A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. Protein Eng 12:381–385

    Article  CAS  PubMed  Google Scholar 

  30. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  31. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684.

    CAS  PubMed  Google Scholar 

  32. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodriguez DM, Ocampo M, Curtidor H, Vanegas M, Patarroyo ME, Patarroyo MA (2012) Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides 38:208–216. doi:10.1016/j.peptides.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez DC, Ocampo M, Varela Y, Curtidor H, Patarroyo MA and Patarroyo ME (2015) Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. Pathog Dis 73(3): ftu020. doi:10.1093/femspd/ftu020

    Article  PubMed  Google Scholar 

  36. Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 82:5131–5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  38. Bermudez LE, Goodman J (1996) Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 64:1400–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356

    Article  CAS  PubMed  Google Scholar 

  40. Restrepo-Montoya D, Vizcaíno C, Niño LF, Ocampo M, Patarroyo ME, Patarroyo MA (2009) Validating subcellular localization prediction tools with mycobacterial proteins. Bmc Bioinform 10:134

    Article  Google Scholar 

  41. Holzwarth G, Doty P (1965) The ultraviolet circular dichroism of polypeptides1. J Am Chem Soc 87:218–228

    Article  CAS  PubMed  Google Scholar 

  42. Berova N, Nakanishi K (2000) Circular dichroism: principles and applications. Wiley, New York

    Google Scholar 

  43. Bochicchio B, Tamburro AM (2002) Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 14:782–792

    Article  CAS  PubMed  Google Scholar 

  44. Jones M (1999) Surfactants in membrane solubilisation. Int J Pharm 177:137–159

    Article  CAS  PubMed  Google Scholar 

  45. Patarroyo ME, Bermudez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, Patarroyo MA (2015) IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. PLOS ONE 10:e0123249. doi:10.1371/journal.pone.0123249

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Jason Garry for translating the manuscript. The M. tuberculosis, H37Rv strain subcellular protein fractions were obtained through the National Institute of Health (NIH) Biodefense and Emerging Infection Research Resources Repository, National Institute of Allergy and Infectious Diseases (NIAID). This Research was financed by the Colombian Science, Technology and Innovation Institute (COLCIENCIAS) through contract 677–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisol Ocampo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 300 KB)

Supplementary material 2 (TIF 268 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, D.P., Ocampo, M., Varela, Y. et al. Identifying and characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion. Mol Cell Biochem 430, 149–160 (2017). https://doi.org/10.1007/s11010-017-2962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2962-8

Keywords

Navigation