Skip to main content
Log in

2-Deoxy glucose regulate MMP-9 in a SIRT-1 dependent and NFkB independent mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MMP9 is a member of the family of zinc-containing endopeptidases which degrade various components of the extracellular matrix, thereby regulating matrix remodeling. Since matrix remodeling plays an important role during growth and progression of cancer and considering the fact that, tumor cells switch to aerobic glycolysis as its major energy source, this study was designed to analyze if partial inhibition of glycolysis (the major energy pathway during hypoxia) can be used as a means to control matrix remodeling in terms of MMP9 activity and expression. For this, human epithelial carcinoma cells were treated with glycolytic inhibitor, 2-deoxy glucose (2DG) at sub-lethal concentrations followed by analysis of the expression and activity of MMP2 and MMP9. The experimental findings demonstrate that exposure of cancer cells to glycolytic inhibitor at concentration that does not induce ER stress, downregulates the activity and expression of MMP9 without affecting the expression levels and activity of MMP2. Further mechanistic analysis revealed that the regulation of MMP9 was mediated in a SIRT-1 dependent mechanism and did not alter the NFkB signaling pathway. The overall results presented here, therefore suggest that the use of glycolytic inhibitor, 2DG at concentration that do not affect cell viability or induce ER stress can be an effective strategy to control matrix remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2DG:

2-Deoxy glucose

MMP9:

Matrix metalloprotease 9

SIRT-1:

Sirtuin-1

NFkB:

Nuclear factor kB

ER:

Endoplasmic reticulum

ELISA:

Enzyme-linked immunosorbent assay

SDS-PAGE:

Sodium dodecyl sulphate Poly acrylamide gel electrophoresis

NAD+ :

Nicotinamide adenine dinucleotide

qPCR:

Quantitative real-time PCR

References

  1. Kiefer JA, Farach Carson MC (2001) Type I collagen-mediated proliferation of PC3 prostate carcinoma cell line: implications for enhanced growth in the bone microenvironment. Matrix Biol 20:429–437

    Article  CAS  PubMed  Google Scholar 

  2. Bossman FT, Stamenkovic I (2003) Functional structure and composition of extracellular matrix. J Pathol 200:423–428

    Article  Google Scholar 

  3. Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–342

    Article  PubMed  Google Scholar 

  4. Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39:1987–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibro proliferative diseases. J Clin Invest 117:524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Butcher DT, Alliston T, Weaver VMA (2009) Tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strongin AY (2006) Mislocalization and unconventional functions of cellular MMPs in cancer. Cancer Metastasis Rev 25:87–98

    Article  CAS  PubMed  Google Scholar 

  8. Rajeshwar P Verma, Hansch Corwin (2007) Matrix metalloproteinases (MMPs): chemical–biologicalfunctions and (Q) SARs. Bioorg Med Chem 15:2223–2268

    Article  Google Scholar 

  9. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    CAS  PubMed  Google Scholar 

  10. Bode W, Maskos K (2003) Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. J Biol Chem 384:863–872

    CAS  Google Scholar 

  11. Lopez Otin, Pendas AM, Knauper V, Puente XS, Llano E, Mattei MG, Apte S, Murphy G (1997) Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem 272:4281–4286

    Article  Google Scholar 

  12. Parks WC, Shapir SD (2001) Matrix metalloproteinases in lung biology. Respir Res 2:10–19

    Article  CAS  PubMed  Google Scholar 

  13. Ambili M, Sudhakaran PR (1998) Assay of matrix metalloproteinases in substrate impregnated gels in multiwells. Ind J Biochem Biophys 35(5):317–320

    CAS  Google Scholar 

  14. Engvall E, Perlmann P (1971) Enzyme linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874

    Article  CAS  PubMed  Google Scholar 

  15. Chomczynski P, Mackey K (1995) Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques 19(6):942–945

    CAS  PubMed  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  17. Gao Z, Ye J (2008) Inhibion of transcriptional activity of c-JUN by SIRT-1. Biochem Biophys Res Commun 376:793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ozbek S, Balasubramanian PG, Chiquet Ehrismann R, Tucker RP, Adams JC (2010) The evolution of extracellular matrix. Mol Biol Cell 21:4300–4305

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P, Schwartz L, Icard P (2006) Effect of 2-deoxy-d-glucose on various malignant cell lines in vitro. Anticancer Res 26(5A):3561–3566

    CAS  PubMed  Google Scholar 

  20. Aft RL, Zhang TW, Gius D (2002) Evaluation of 2DG as a chemotherapeutic agent:mechanism of celldeath. Br J Cancer 87:805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haibin Xi, Kurtoglu Metin, Theodore J (2011) 2-deoxy-D- glucose activates autophagy via endoplasmic reticulam stress rather than ATP depletion. Cancer Chemother Pharmacol 67:899–910

    Article  Google Scholar 

  22. Bonnans Caroline, Chou Jonathan, Werb Zena (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kessenbrock Kai, Plaks Vicki, Werb Zena (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim KA, Ching SB, Hawng EY, Noh SH, Song KH, Kim HH, Kim CH, Park YG (2013) J Periodontal implant Sci 43:123–127

    Google Scholar 

  25. Chou YC, Sheu JR, Chung CL, Chen CY, Lin FL, Hsu MJ, Kuo YH, Hasiao G (2010) Nuclear targeter inhibition of NFkB on MMP9 production by N-2(4-bromophenyl) ethyl caffaemide in human monocytic cells. Chem Biol Interact 184:403–412

    Article  CAS  PubMed  Google Scholar 

  26. Pascucci Barbara, Lemma Tiziana, Iorio Egidio, Giovannini Sara, Iavarone Ivano, Calcagnile Angelo, Narciso Laura (2012) An altered redox balance mediates the hypersensitivity of Cockayne syndrome primary fibroblasts to oxidative stress. Aging Cell 11:520–529

    Article  CAS  PubMed  Google Scholar 

  27. Kunhiraman Haritha, Edatt Lincy, Thekkeveedu Sruthi, Poyyakkara Aswini, Raveendran Viji, Kiran Manikantan Syamala, Sudhakaran Perumana, Kumar Sameer VB (2016) 2-Deoxy Glucose modulates expression and biological activity of VEGF in a SIRT-1 dependent mechanism. J Cell Biochem 9999:1–11

    Google Scholar 

  28. Yang T, Sauve AA (2006) NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity. AAPS J8:E632–E643

    Article  Google Scholar 

  29. Hwang JW, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 61C:95–110

    Article  Google Scholar 

  30. Nakamaru Yuji, Vuppusetty Chaitanya, Wada Hiroo, Milne Jill C, Ito Misako, Rossios Christos, Elliot Mark, Hogg James, Kharitonov Sergei, Goto Hajime, Bemis Jean E, Elliott Peter, Barnes Peter J, Ito Kazuhiro (2009) A protein deacetylase SIRT1 is a negative regulator metalloproteinase-9. FASEB J 23:2810–2819

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance received from DST-SERB and KSCSTE is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Sameer Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edatt, L., Haritha, K., Sruthi, T.V. et al. 2-Deoxy glucose regulate MMP-9 in a SIRT-1 dependent and NFkB independent mechanism. Mol Cell Biochem 423, 197–206 (2016). https://doi.org/10.1007/s11010-016-2837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2837-4

Keywords

Navigation