Skip to main content

Advertisement

Log in

Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Melatonin is well known for its cardioprotective effects; however, whether melatonin exerts therapeutic effects on cardiomyocyte hypertrophy remains to be investigated, as do the mechanisms underlying these effects, if they exist. Cyclophilin A (CyPA) and its corresponding receptor, CD147, which exists in a variety of cells, play crucial roles in modulating reactive oxygen species (ROS) production. In this study, we explored the role of the CyPA/CD147 signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and the protective effects exerted by melatonin against Ang II-induced injury in cultured H9C2 cells. Cyclosporine A, a specific CyPA/CD147 signaling pathway inhibitor, was used to manipulate CyPA/CD147 activity. H9C2 cells were then subjected to Ang II or CyPA treatment in either the absence or presence of melatonin. Our results indicate that Ang II induces cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway and promotes ROS production, which can be blocked by melatonin pretreatment in a concentration-dependent manner, in cultured H9C2 cells and that CyPA/CD147 signaling pathway inhibition protects against Ang II-induced cardiomyocyte hypertrophy. The protective effects of melatonin against Ang II-induced cardiomyocyte hypertrophy depend at least partially on CyPA/CD147 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen T, Liu J, Li N, Wang S, Liu H, Li J, Zhang Y, Bu P (2015) Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS ONE 10:e0118909. doi:10.1371/journal.pone.0118909

    Article  PubMed  PubMed Central  Google Scholar 

  2. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112:417–428. doi:10.1042/CS20060342

    Article  CAS  PubMed  Google Scholar 

  3. Weber KT (1997) Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065–4082. doi:10.1161/01.CIR.96.11.4065

    Article  CAS  PubMed  Google Scholar 

  4. Zornoff LA, Paiva SA, Matsubara BB, Matsubara LS, Spadaro J (2000) Combination therapy with angiotensin converting enzyme inhibition and AT1 receptor inhibitor on ventricular remodeling after myocardial infarction in rats. J Cardiovasc Pharmacol Ther 5:203–209. doi:10.1054/JCPT.2000.7450

    Article  CAS  PubMed  Google Scholar 

  5. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296. doi:10.1161/hc0302.103712

    Article  CAS  PubMed  Google Scholar 

  6. Garrido AM, Griendling KK (2009) NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol 302:148–158. doi:10.1016/j.mce.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  7. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:H2181–H2190. doi:10.1152/ajpheart.00554.2011

    Article  CAS  PubMed  Google Scholar 

  8. Sherry B, Yarlett N, Strupp A, Cerami A (1992) Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci USA 89:3511–3515. doi:10.1073/pnas.89.8.3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104. doi:10.1182/blood-2003-08-2804

    Article  CAS  PubMed  Google Scholar 

  10. Jin ZG, Melaragno MG, Liao DF, Yan C, Haendeler J, Suh YA, Lambeth JD, Berk BC (2000) Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res 87:789–796. doi:10.1161/01.RES.87.9.789

    Article  CAS  PubMed  Google Scholar 

  11. Nishioku T, Dohgu S, Koga M, Machida T, Watanabe T, Miura T, Tsumagari K, Terasawa M, Yamauchi A, Kataoka Y (2012) Cyclophilin A secreted from fibroblast-like synoviocytes is involved in the induction of CD147 expression in macrophages of mice with collagen-induced arthritis. J Inflamm 9:44. doi:10.1186/1476-9255-9-44

    Article  CAS  Google Scholar 

  12. Iacono KT, Brown AL, Greene MI, Saouaf SJ (2007) CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol 83:283–295. doi:10.1016/j.yexmp.2007.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yurchenko V, O’Connor M, Dai WW, Guo H, Toole B, Sherry B, Bukrinsky M (2001) CD147 is a signaling receptor for cyclophilin B. Biochem Biophys Res Commun 288:786–788. doi:10.1006/bbrc.2001.5847

    Article  CAS  PubMed  Google Scholar 

  14. Steinmann B, Bruckner P, Superti-Furga A (1991) Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cistrans-isomerase. J Biol Chem 266:1299–1303

    CAS  PubMed  Google Scholar 

  15. Satoh K, Nigro P, Zeidan A, Soe NN, Jaffré F, Oikawa M, O’Dell MR, Cui Z, Menon P, Lu Y, Mohan A, Yan C, Blaxall BC, Berk BC (2011) Cyclophilin A promotes cardiac hypertrophy in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 31:1116–1123. doi:10.1161/ATVBAHA.110.214601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43. doi:10.1111/j.1600-079X.2011.00856.x

    Article  CAS  PubMed  Google Scholar 

  17. Siu AW, Maldonado M, Sanchez-Hidalgo M, Tan DX, Reiter RJ (2006) Protective effects of melatonin in experimental free radical-related ocular diseases. J Pineal Res 40:101–109. doi:10.1111/j.1600-079X.2005.00304.x

    Article  CAS  PubMed  Google Scholar 

  18. Shi D, Xiao X, Wang J, Liu L, Chen W, Fu L, Xie F, Huang W, Deng W (2012) Melatonin suppresses proinflammatory mediators in lipopolysaccharide-stimulated CRL1999 cells via targeting MAPK, NF-κB, c/EBPβ, and p300 signaling. J Pineal Res 53:154–165. doi:10.1111/j.1600-079X.2012.00982.x

    Article  CAS  PubMed  Google Scholar 

  19. Yuan X, Li B, Li H, Xiu R (2011) Melatonin inhibits IL-1beta-induced monolayer permeability of human umbilical vein endothelial cells via Rac activation. J Pineal Res 51:220–225. doi:10.1111/j.1600-079X.2011.00882.x

    Article  CAS  PubMed  Google Scholar 

  20. Simko F, Paulis L (2013) Antifibrotic effect of melatonin—Perspective protection in hypertensive heart disease. Int J Cardiol 168:2876–2877. doi:10.1016/j.ijcard.2013.03.139

    Article  PubMed  Google Scholar 

  21. Simko F, Bednarova KR, Krajcirovicova K, Hrenak J, Celec P, Kamodyova N, Gajdosechova L, Zorad S, Adamcova M (2014) Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J Pineal Res 57:177–184. doi:10.1111/jpi.12154

    Article  CAS  PubMed  Google Scholar 

  22. Lamont KT, Somers S, Lacerda L, Opie LH, Lecour S (2011) Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection. J Pineal Res 50:374–380. doi:10.1111/j.1600-079X.2010.00853.x

    Article  CAS  PubMed  Google Scholar 

  23. Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A (2011) Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res 50:171–182. doi:10.1111/j.1600-079X.2010.00826.x

    CAS  PubMed  Google Scholar 

  24. Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R (2008) Cardiovascular diseases: protective effects of melatonin. J Pineal Res 44:16–25. doi:10.1111/j.1600-079X.2007.00518.x

    CAS  PubMed  Google Scholar 

  25. Dominguez-Rodriguez A, Abreu-Gonzalez P, Reiter RJ (2014) Cardioprotection and pharmacological therapies in acute myocardial infarction: challenges in the current era. World J Cardiol 6:100–106. doi:10.4330/wjc.v6.i3.100

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang Y, Sun Y, Yi W, Li Y, Fan C, Xin Z, Jiang S, Di S, Qu Y, Reiter RJ, Yi D (2014) A review of melatonin as a suitable antioxidant against myocardial ischemia–reperfusion injury and clinical heart diseases. J Pineal Res 57:357–366. doi:10.1111/jpi.12175

    Article  CAS  PubMed  Google Scholar 

  27. Duan W, Yang Y, Yi W, Yan J, Liang Z, Wang N, Li Y, Chen W, Yu S, Jin Z, Yi D (2013) New role of JAK2/STAT3 signaling in endothelial cell oxidative stress injury and protective effect of melatonin. PLoS ONE 8:e57941. doi:10.1371/journal.pone.0057941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L (2010) Beneficial effects of melatonin in cardiovascular disease. Ann Med 42:276–285. doi:10.3109/07853890903485748

    Article  CAS  PubMed  Google Scholar 

  29. Lochner A, Huisamen B, Nduhirabandi F (2013) Cardioprotective effect of melatonin against ischaemia/reperfusion damage. Front Biosci (Elite Ed) 5:305–315. doi:10.2741/E617

    Article  Google Scholar 

  30. Nduhirabandi F, Lamont K, Albertyn Z, Opie LH, Lecour S (2016) Role of toll-like receptor 4 in melatonin-induced cardioprotection. J Pineal Res 60:39–47. doi:10.1111/jpi.12286

    Article  CAS  PubMed  Google Scholar 

  31. Yu L, Liang H, Dong X, Zhao G, Jin Z, Zhai M, Yang Y, Chen W, Liu J, Yi W, Yang J, Yi D, Duan W, Yu S (2015) Reduced silent information regulator 1 signaling exacerbates myocardial ischemia–reperfusion injury in type 2 diabetic rats and the protective effect of melatonin. J Pineal Res 59:376–390. doi:10.1111/jpi.12269

    Article  CAS  PubMed  Google Scholar 

  32. Yu L, Liang H, Lu Z, Zhao G, Zhai M, Yang Y, Yang J, Yi D, Chen W, Wang X, Duan W, Jin Z, Yu S (2015) Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia–reperfusion injury: in vivo and in vitro studies. J Pineal Res 59:420–433. doi:10.1111/jpi.12272

    Article  CAS  PubMed  Google Scholar 

  33. Chen ZJ, Vetter M, Chang G-D, Liu S, Che D, Ding Y, Kim SS, Chang CH (2004) Cyclophilin A functions as an endogenous inhibitor for membrane-bound guanylate cyclase-A. Hypertension 44:963–968. doi:10.1161/01.HYP.0000145859.94894.23

    Article  CAS  PubMed  Google Scholar 

  34. Sun S, Wang Q, Giang A, Cheng C, Soo C, Wang CY, Liau LM, Chiu R (2011) Knockdown of CypA inhibits interleukin-8 (IL-8) and IL-8-mediated proliferation and tumor growth of glioblastoma cells through down-regulated NF-κB. J Neurooncol 101:1–14. doi:10.1007/s11060-010-0220-y

    Article  PubMed  Google Scholar 

  35. Warcoin E, Baudouin C, Gard C, Brignole-Baudouin F (2016) In vitro inhibition of NFAT5-mediated induction of CCL2 in hyperosmotic conditions by cyclosporine and dexamethasone on human HeLa-modified conjunctiva-derived cells. PLoS ONE 11:e0159983. doi:10.1371/journal.pone.0159983

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu CM, Chen YH, Chiang MT, Chau LY (2004) Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation 110:309–316. doi:10.1161/01.CIR.0000135475.35758.23

    Article  CAS  PubMed  Google Scholar 

  37. Fang Z, Tang Y, Jiao W, Xing Z, Guo Z, Wang W, Xu Z, Liu Z (2014) Nitidine chloride induces apoptosis and inhibits tumor cell proliferation via suppressing ERK signaling pathway in renal cancer. Food Chem Toxicol 66:210–216. doi:10.1016/j.fct.2014.01.049

    Article  CAS  PubMed  Google Scholar 

  38. Xuan CL, Yao FR, Guo LR, Liu Q, Chang SK, Liu KX, Sun CW (2013) Comparison of extracts from cooked and raw lentil in antagonizing angiotensin II-induced hypertension and cardiac hypertrophy. Eur Rev Med Pharmacol Sci 17:2644–2653

    PubMed  Google Scholar 

  39. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97. doi:10.1152/ajpcell.00287.2006

    Article  CAS  PubMed  Google Scholar 

  40. Kurdi M, Booz GW (2011) New take on the role of angiotensin II in cardiac hypertrophy and fibrosis. Hypertension 57:1034–1038. doi:10.1161/HYPERTENSIONAHA.111.172700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhai L, Zhang P, Sun RY, Liu XY, Liu WG, Guo XL (2011) Cytoprotective effects of CSTMP, a novel stilbene derivative, against H2O2-induced oxidative stress in human endothelial cells. Pharmacol Rep 63:1469–1480. doi:10.1016/S1734-1140(11)70711-3

    Article  CAS  PubMed  Google Scholar 

  42. Simko F, Reiter RJ, Pechanova O, Paulis L (2013) Experimental models of melatonin-deficient hypertension. Front Biosci 18:616–625. doi:10.2741/4125

    Article  CAS  Google Scholar 

  43. Petrosillo G, Colantuono G, Moro N, Ruggiero FM, Tiravanti E, Di Venosa N, Fiore T, Paradies G (2009) Melatonin protects against heart ischemia–reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Am J Physiol Heart Circ Physiol 297:H1487–H1493. doi:10.1152/ajpheart.00163.2009

    Article  CAS  PubMed  Google Scholar 

  44. Reiter RJ, Tan D, Maldonado MD (2005) Melatonin as an antioxidant: physiology versus pharmacology. J Pineal Res 39:215–216. doi:10.1111/j.1600-079X.2005.00261.x

    Article  CAS  PubMed  Google Scholar 

  45. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16. doi:10.1111/j.1600-079X.2011.00916.x

    Article  CAS  PubMed  Google Scholar 

  46. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984. doi:10.1016/0092-8674(93)90541-W

    Article  CAS  PubMed  Google Scholar 

  47. Satoh K, Nigro P, Matoba T, O’Dell MR, Cui Z, Shi X, Mohan A, Yan C, Abe J, Illig KA, Berk BC (2009) Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med 15:649–656. doi:10.1038/nm.1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547. doi:10.1126/science.6238408

    Article  CAS  PubMed  Google Scholar 

  49. Yurchenko V, Zybarth G, O’Connor M, Dai WW, Franchin G, Hao T, Guo H, Hung HC, Toole B, Gallay P, Sherry B, Bukrinsky M (2002) Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem 277:22959–22965. doi:10.1074/jbc.M201593200

    Article  CAS  PubMed  Google Scholar 

  50. Galat A, Metcalfe SM (1995) Peptidylproline cis/trans isomerases. Prog Biophys Mol Biol 63:67–118. doi:10.1016/0079-6107(94)00009-X

    Article  CAS  PubMed  Google Scholar 

  51. Muramatsu T, Miyauchi T (2003) Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol 18:981–987

    CAS  PubMed  Google Scholar 

  52. Lu Q, Yi X, Cheng X, Sun X, Yang X (2015) Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide. In Vitro Cell Dev Biol Anim 51(4):353–360. doi:10.1007/s11626-014-9844-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author(s) disclose receipt of the following financial support for this research and the authorship and/or publication of this article: funding support was provided by the National Natural Science Foundation of China (Nos. 81070076, 81170135), the National 973 Basic Research Program of China (No. 2012CB722406), and the Science Foundation of Qilu Hospital of Shandong (No. 2016QLQN17).

Author Contributions

This Project was conceived by Hongyan Su. The experiments were performed by Hongyan Su, Jingyuan Li, Tongshuai Chen, and Na Li. The results were interpreted by Hongyan Su, Jingyuan Li, Tongshuai Chen, Na Li, and Peili Bu. The manuscript was written and approved by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peili Bu.

Ethics declarations

Conflict of Interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Li, J., Chen, T. et al. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway. Mol Cell Biochem 422, 85–95 (2016). https://doi.org/10.1007/s11010-016-2808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2808-9

Keywords

Navigation