Advertisement

Molecular and Cellular Biochemistry

, Volume 421, Issue 1–2, pp 183–191 | Cite as

The effect of 17β-estradiol on sex-dimorphic cytochrome P450 expression patterns induced by hyperoxia in the liver of male CBA/H mice

  • Željka Mačak Šafranko
  • Tihomir Balog
  • Marina Musa
  • Ivana Tartaro Bujak
  • Sandra Sobočanec
Article

Abstract

The aim of this study was to determine whether treatment of male CBA/H mice with 17β-estradiol (E2) had protective effect on survival and hepatic oxidative damage of lipids and proteins against hyperoxia. Furthermore, we wanted to explore the effect of E2 treatment on the expression of sex-specific cytochrome P450 isoforms, and their possible involvement in E2-induced resistance to hyperoxia. Lipid peroxidation and protein carbonylation were analysed spectrophotometrically and were used as a measure of lipid and protein oxidative damage. Real-time PCR and western blot analysis were used to measure both gene and protein expression levels of Cyp2E1, Cyp7B1 and Cyp2A4, respectively. We found that treatment of male CBA/H mice with E2 increased survival upon hyperoxia exposure, and provided protection against hepatic lipid and protein oxidative damage. Hyperoxia had feminizing effect on the expression of sex-specific CYPs, which resembled the lifespan-promoting conditions. E2 administration had the opposite effect on the expression pattern of these CYPs in hyperoxic versus normoxic conditions. Results of this research proposed possible male strategy in adaptive response to oxidative stress, which may finally result in their longer lifespan.

Keywords

Liver Mice Hyperoxia CYP Sex dimorphic 17β-Estradiol 

Notes

Acknowledgments

We thank Iva Pešun-Međimorec for her excellent technical assistance, dr.sc. Tatjana Marotti for her invaluable expertise, and dr.sc. Anita Kriško for kindly donating the CYP2A antibody. The research is funded by Croatian Ministry of Science, Education and Sports, Grant No. 0982464-1647.

Compliance with ethical standards

Conflicts of interest

No conflicts of interest declared.

References

  1. 1.
    Seta KA, Yuan Y, Spicer Z et al (2004) The role of calcium in hypoxia-induced signal transduction and gene expression. Cell Calcium 36:331–340. doi: 10.1016/j.ceca.2004.02.006 CrossRefPubMedGoogle Scholar
  2. 2.
    Frank L (1991) Developmental aspects of experimental pulmonary oxygen toxicity. Free Radic Biol Med 11:463–494. doi: 10.1016/0891-5849(91)90062-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Zaher TE, Miller EJ, Morrow DMP et al (2007) Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 42:897–908. doi: 10.1016/j.freeradbiomed.2007.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Landis GN, Abdueva D, Skvortsov D et al (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci USA 101:7663–7668. doi: 10.1073/pnas.0307605101 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guengerich FP, Kim DH, Iwasaki M (1991) Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168–179. doi: 10.1021/tx00020a008 CrossRefPubMedGoogle Scholar
  6. 6.
    Lu Y, Zhuge J, Wang X et al (2008) Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47:1483–1494. doi: 10.1002/hep.22222 CrossRefPubMedGoogle Scholar
  7. 7.
    Li-Hawkins J, Lund EG, Turley SD, Russell DW (2000) Disruption of the oxysterol 7α-hydroxylase gene in mice. J Biol Chem 275:16536–16542. doi: 10.1074/jbc.M001811200 CrossRefPubMedGoogle Scholar
  8. 8.
    Wada T, Kang HS, Angers M et al (2008) Identification of oxysterol 7α-hydroxylase (Cyp7B1) as a novel retinoid-related orphan receptor α (RORα) (NR1F1) target gene and a functional cross-talk between RORα and liver X receptor (NR1H3). Mol Pharmacol 73:891–899. doi: 10.1124/mol.107.040741 CrossRefPubMedGoogle Scholar
  9. 9.
    Jarukamjorn K, Sakuma T, Jaruchotikamol A et al (2006) Modified expression of cytochrome P450 mRNAs by growth hormone in mouse liver. Toxicology 219:97–105. doi: 10.1016/j.tox.2005.11.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Veldhuis JD, Bowers CY (2003) Three-peptide control of pulsatile and entropic feedback-sensitive modes of growth hormone secretion: modulation by estrogen and aromatizable androgen. J Pediatr Endocrinol Metab 16(Suppl 3):587–605PubMedGoogle Scholar
  11. 11.
    Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300. doi: 10.1210/er.2009-0024 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Viña J, Borrás C, Gambini J et al (2005) Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett 579:2541–2545. doi: 10.1016/j.febslet.2005.03.090 CrossRefPubMedGoogle Scholar
  13. 13.
    Šarić A, Sobočanec S, Šafranko ŽM et al (2014) Female headstart in resistance to hyperoxia-induced oxidative stress in mice. Acta Biochim Pol 61:801–807PubMedGoogle Scholar
  14. 14.
    Sobočanec S, Šarić A, Mačak Šafranko Ž et al (2015) The role of 17β-estradiol in the regulation of antioxidant enzymes via the Nrf2-Keap1 pathway in the livers of CBA/H mice. Life Sci 130:57–65. doi: 10.1016/j.lfs.2015.03.014 CrossRefPubMedGoogle Scholar
  15. 15.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi: 10.1016/0003-2697(79)90738-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Vidovic A, Supek F, Nikolic A, Krisko A (2014) Signatures of conformational stability and oxidation resistance in proteomes of pathogenic bacteria. Cell Rep 7:1393–1400. doi: 10.1016/j.celrep.2014.04.057 CrossRefPubMedGoogle Scholar
  17. 17.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi: 10.1139/o59-099 CrossRefPubMedGoogle Scholar
  18. 18.
    Sobočanec S, Balog T, Šarić A et al (2010) Cyp4a14 overexpression induced by hyperoxia in female CBA mice as a possible contributor of increased resistance to oxidative stress. Free Radic Res 44:181–190. doi: 10.3109/10715760903390820 CrossRefPubMedGoogle Scholar
  19. 19.
    Einecke G, Fairhead T, Hidalgo LG et al (2006) Tubulitis and epithelial cell alterations in mouse kidney transplant rejection are independent of CD103, perforin or granzymes A/B. Am J Transplant 6(9):2109–2120CrossRefPubMedGoogle Scholar
  20. 20.
    Lingappan K, Jiang W, Wang L et al (2013) Sex-specific differences in hyperoxic lung injury in mice: implications for acute and chronic lung disease in humans. Toxicol Appl Pharmacol 272:281–290. doi: 10.1016/j.taap.2013.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bryzgalova G, Lundholm L, Portwood N et al (2008) Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol-Endocrinol Metab 295:E904–E912CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wing RR, Matthews KA, Kuller LH et al (1991) Weight gain at the time of menopause. Arch Intern Med 151:97–102CrossRefPubMedGoogle Scholar
  23. 23.
    Simopoulos A (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379. doi: 10.1016/S0753-3322(02)00253-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Caro AA, Cederbaum AI (2004) Oxidative stress, toxicology, and pharmacology of Cyp2E1. Annu Rev Pharmacol Toxicol 44:27–42. doi: 10.1146/annurev.pharmtox.44.101802.121704 CrossRefPubMedGoogle Scholar
  25. 25.
    Raucy JL, Lasker JM, Kraner JC et al (1991) Induction of cytochrome P450IIE1 in the obese overfed rat. Mol Pharmacol 39:275–280PubMedGoogle Scholar
  26. 26.
    Yun YP, Casazza JP, Sohn DH et al (1992) Pretranslational activation of cytochrome P450IIE during ketosis induced by a high fat diet. Mol Pharmacol 41:474–479PubMedGoogle Scholar
  27. 27.
    Shertzer HG, Clay CD, Genter MB et al (2004) Cyp1a2 protects against reactive oxygen production in mouse liver microsomes. Free Radic Biol Med 36:605–617. doi: 10.1016/j.freeradbiomed.2003.11.013 CrossRefPubMedGoogle Scholar
  28. 28.
    Adas F, Berthou F, Picart D et al (1998) Involvement of cytochrome P450 2E1 in the (ω–1)-hydroxylation of oleic acid in human and rat liver microsomes. J Lipid Res 39:1210–1219PubMedGoogle Scholar
  29. 29.
    Mačak-Šafranko Ž, Sobočanec S, Šarić A et al (2011) Cytochrome P450 gender-related differences in response to hyperoxia in young CBA mice. Exp Toxicol Pathol 63:345–350. doi: 10.1016/j.etp.2010.02.009 CrossRefPubMedGoogle Scholar
  30. 30.
    Kocarek T, Zangar R, Novak R (2000) Post-transcriptional regulation of rat CYP2E1 expression: role of CYP2E1 mRNA untranslated regions in control of translational efficiency and message stability. Arch Biochem Biophys 376(1):180–190CrossRefPubMedGoogle Scholar
  31. 31.
    Cederbaum AI, Lu Y, Wu D (2009) Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83:519–548. doi: 10.1007/s00204-009-0432-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Omoto Y, Lathe R, Warner M, Gustafsson J-Å (2005) Early onset of puberty and early ovarian failure in Cyp7B1 knockout mice. Proc Natl Acad Sci USA 102:2814–2819. doi: 10.1073/pnas.0500198102 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Amador-Noguez D, Zimmerman J, Venable S, Darlington G (2005) Gender-specific alterations in gene expression and loss of liver sexual dimorphism in the long-lived Ames dwarf mice. Biochem Biophys Res Commun 332:1086–1100. doi: 10.1016/j.bbrc.2005.05.063 CrossRefPubMedGoogle Scholar
  34. 34.
    Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460. doi: 10.1016/j.cell.2005.02.002 CrossRefPubMedGoogle Scholar
  35. 35.
    Rogers AB, Theve EJ, Feng Y et al (2007) Hepatocellular carcinoma associated with liver-gender disruption in male mice. Cancer Res 67:11536–11546. doi: 10.1158/0008-5472.CAN-07-1479 CrossRefPubMedGoogle Scholar
  36. 36.
    Estep PW III, Warner JB, Bulyk ML (2009) Short-term calorie restriction in male mice feminizes gene expression and alters key regulators of conserved aging regulatory pathways. PLoS One 4:e5242CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Honda Y, Honda S (2002) Life span extensions associated with upregulation of gene expression of antioxidant enzymes in Caenorhabditis elegans; studies of mutation in the age-1, PI3 kinase homologue and short-term exposure to hyperoxia. J Am Aging Assoc 25:21–28. doi: 10.1007/s11357-002-0003-2 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory for Reactive Radicals, Division of Molecular MedicineRuđer Bošković InstituteZagrebCroatia
  2. 2.Mediterranean Institute for Life SciencesSplitCroatia
  3. 3.Radiation Chemistry and Dosimetry Laboratory, Division of Materials ChemistryRuđer Bošković InstituteZagrebCroatia

Personalised recommendations