Skip to main content
Log in

Intracellular angiotensin-(1–12) changes the electrical properties of intact cardiac muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the present work, the influence of intracellular injection of angiotensin-(1–12) [Ang-(1–12)] on the electrical properties of the intact left ventricle of Wistar Kyoto rats was investigated with electrophysiological methods. Particular attention was given to the role of chymostatin on the effect of the peptide. The results indicated that intracellular administration of the peptide elicited a depolarization of the surface cell membrane and an increase of duration of the action potential followed by the generation of early afterdepolarizations. The increment of action potential duration caused by Ang-(1–12) (100 nM) was due to a decrease of total potassium current recorded from single cardiomyocytes using the whole cell configuration of pCAMP. The decrease of potassium current was related to the activation of protein kinase C (PKC) because the specific inhibitor of kinase C, Bis-1 (10−9 M), abolished Ang-(1–12) effects on the potassium current. The question of whether the effect of Ang-(1–12) was related to the formation of Ang II by chymase was investigated.The results revealed that the intracellular administration of chymostatin, a chymase inhibitor (10−9 M) abolished the effect of intracellular Ang-(1–12) on the potassium current. Moreover, intracellular Ang II (100 nM), by itself, reduced the potassium current, an effect decreased by intracellular valsartan (100 nM). Valsartan (10–9 M) dialyzed into the cell abolished the effect of Ang-(1–12) (100 nM). These observations demonstrate that the effect of Ang-(1–12) on potassium current was related to the formation of Ang II and that the peptide has arrhythmogenic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nagata S, Varagic J, Kon ND, Wang H, Groban L, Simington SW, Ahmad S, Dell’Italia LJ, VonCannon JL, Deal D, Ferrario CM (2015) Differential expression of the angiotensin-(1–12)/chymase axis in human atrial tissue. Ther Adv Cardiovasc Dis 9(4):168–180. doi:10.1177/1753944715589717

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad S, Varagic J, Groban L, Dell’Italia LJ, Nagata S, Kon ND, Ferrario CM (2014) Angiotensin-(1–12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep 16(5):429. doi:10.1007/s11906-014-0429-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J et al (2014) An evolving story of angiotensin II forming pathways in rodents and humans. Clin Sci 126:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng J, Wei CC, Hase N, Shi K, Killingsworth CR, Litovsky SH (2014) Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog. PLoS One 9(4):e94732. doi:10.1371/journal.pone.0094732

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arnold AC, Isa K, Shaltout HA et al (2010) Angiotensin-(1–12) requires angiotensin converting enzyme and AT1 receptors for cardiovascular actions within the solitary tract nucleus. Am J Physiol Heart Circ Physiol 299(3):H763–H771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Mello WC (2001) Cardiac arrhythmias: the possible role of the renin-angiotensin system. J Mol Med 79(2–3):103–108

    Article  PubMed  Google Scholar 

  7. De Mello WC (1994) Is an intracellular renin angiotensin system involved in the control of cell communication in heart? J Cardiovasc Pharmacol 23:640–646

    Article  PubMed  Google Scholar 

  8. De Mello WC, Danser AHJ (2000) Angiotensin II and the heart on the intracrine renin angiotensin system. Hypertension 35:1183–1188. doi:10.1161/01.HYP.35.6.1183

    Article  PubMed  Google Scholar 

  9. Kurdi M, De Mello WC, Booz GW (2005) Working outside the system: an update on unconventional behavior of the renin angiotensin system components. Int J Biochem Cell Biol 37:1357–1367. doi:10.1016/j.biocel.2005.01.012

    Article  CAS  PubMed  Google Scholar 

  10. Re RN, Cook JL (2008) The basis of an intracrine physiology. J Clin Pharmacol 48:344–350. doi:10.1177/0091270007312155

    Article  CAS  PubMed  Google Scholar 

  11. Kumar R, Singh VP, Baker KM (2008) The intracellular renin angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens 17:168–173. doi:10.1097/MNH.0b013e3282f521a8

    Article  CAS  PubMed  Google Scholar 

  12. De Mello WC (2006) On the pathophysiological implications of an intracellular renin receptor. Circ Res 99:1285–1286. doi:10.1161/01.RES.0000253141.65450.fc

    Article  PubMed  Google Scholar 

  13. Serneri GGN, Boddi M, Cecioni I, Vanni S, Coppo M, Papa ML et al (2001) Cardiac angiotensin II formation in the clinical course of heart failure and its relationship with left ventricular function. Circ Res 88:961–968. doi:10.1161/hh0901.089882

    Article  CAS  PubMed  Google Scholar 

  14. Danser AH, van Kats JP, Admiraal PJ, Derkx FH, Lamers JM, Verdouw PD et al (1994) Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis. Hypertension 24(1):37–48. doi:10.1161/01.HYP.24.1.37

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad S, Varagic J, Westwood BM et al (2011) Uptake and metabolism of the novel peptide angiotensin-(1–12) by neonatal cardiac myocytes. PLoS One 6(1):e15759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Mello WC (2013) Intracellular renin alters the electrical properties of the intact heart ventricle of adult Sprague Dawley rats. Regul Pept 10(181):45–49. doi:10.1016/j.regpep.2012.12.015

    Article  Google Scholar 

  17. Jessup JA, Trask AJ, Chappell MC, Nagata S, Kato J, Kitamura K, Ferrario CM (2008) Localization of the novel angiotensin peptide, angiotensin-(1–12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol 294(6):H2614–H2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levy MN, Wiseman MN (1991) Electrophysiologic mechanisms for ventricular arrhythmias in left ventricular dysfunction: electrolytes, catecholamines and drugs. J Clin Pharmacol 31:1053–1060

    Article  CAS  PubMed  Google Scholar 

  19. Marban E, Robinson SW, Wier WG (1986) Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J Clin Invest 78:1185–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69:1049–1169

    CAS  PubMed  Google Scholar 

  21. Seylera C, Zhangb W, Scherera D, Völkersa M, Bloehsa R et al (2011) Central role of PKCα in isoenzyme-selective regulation of cardiac transient outward current I to and Kv4.3 channels. J Mol Cell Cardiol 51:722–729

    Article  Google Scholar 

  22. De Mello WC, Frohlich ED (2014) Clinical perspectives and fundamental aspects of local cardiovascular and renal renin-angiotensin systems. Front Endocrinol 19:5–16. doi:10.3389/fendo.2014.00016

    Google Scholar 

  23. Zhuo JL, Li XC, Jeffrey L, Garvin L et al (2006) Intracellular Ang II induces cytosolic Ca2+ mobilization by stimulating intracellular AT1 receptors in proximal tubule cells. Am J Physiol 290:F1382–F1390

    CAS  Google Scholar 

  24. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE (2005) Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111(20):2605–2610

    Article  CAS  PubMed  Google Scholar 

  25. De Mello WC (1998) Intracellular angiotensin II regulates the inward calcium current in cardiac myocytes. Hypertension 32:076–082. doi:10.1161/01.HYP.32.6.976

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the partial support that was provided for this study from Program Project Grant 2P01-HL051952 from the National Heart, Lung, and Blood Institute (NHLBI) to (F CM) and Institutional NIH GM61838 (WCM).

Author’s contribution

Dr. WC De Mello performed the electrophysiological experiments and organized the text. Dr. CM Ferrario, Dr. J Varajic, and Dr. L D’Italia performed the immunochemistry studies and revised the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. C. De Mello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Mello, W.C., Dell’Itallia, L.J., Varagic, J. et al. Intracellular angiotensin-(1–12) changes the electrical properties of intact cardiac muscle. Mol Cell Biochem 422, 31–40 (2016). https://doi.org/10.1007/s11010-016-2801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2801-3

Keywords

Navigation