McMurray JJ (2010) Clinical practice. Systolic heart failure. N Engl J Med 362:228–238. doi:10.1056/NEJMcp0909392
CAS
Article
PubMed
Google Scholar
Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018. doi:10.1056/NEJMra021498
Article
PubMed
Google Scholar
Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107:7000–7005. doi:10.1073/pnas.1001825107
CAS
Article
PubMed
PubMed Central
Google Scholar
Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118. doi:10.1161/01.res.0000109415.17511.18
CAS
Article
PubMed
Google Scholar
Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126. doi:10.1172/jci27702
CAS
Article
PubMed
PubMed Central
Google Scholar
Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K, Kodama I, Yasui K (2008) T-type Ca2 + channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2 + channel blockers. Life Sci 82:554–560. doi:10.1016/j.lfs.2007.11.010
CAS
Article
PubMed
Google Scholar
Sabourin J, Robin E, Raddatz E (2011) A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc Res 92:226–236. doi:10.1093/cvr/cvr167
CAS
Article
PubMed
Google Scholar
Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2 + channel. Circ Res 105:51–60. doi:10.1161/circresaha.109.199828
CAS
Article
PubMed
PubMed Central
Google Scholar
Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman JG (2002) The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest 109:1013–1020. doi:10.1172/jci14677
CAS
Article
PubMed
PubMed Central
Google Scholar
Liao Y, Asakura M, Takashima S, Ogai A, Asano Y, Asanuma H, Minamino T, Tomoike H, Hori M, Kitakaze M (2005) Benidipine, a long-acting calcium channel blocker, inhibits cardiac remodeling in pressure-overloaded mice. Cardiovasc Res 65:879–888. doi:10.1016/j.cardiores.2004.11.006
CAS
Article
PubMed
Google Scholar
Nuss HB, Houser SR (1994) Effect of duration of depolarisation on contraction of normal and hypertrophied feline ventricular myocytes. Cardiovasc Res 28:1482–1489
CAS
Article
PubMed
Google Scholar
Cribbs LL, Martin BL, Schroder EA, Keller BB, Delisle BP, Satin J (2001) Identification of the t-type calcium channel (Ca(v)3.1d) in developing mouse heart. Circ Res 88:403–407
CAS
Article
PubMed
Google Scholar
Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108:265–272. doi:10.1161/circresaha.110.225888
CAS
Article
PubMed
Google Scholar
Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030. doi:10.1161/circresaha.109.206581
CAS
Article
PubMed
PubMed Central
Google Scholar
Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20:1660–1670. doi:10.1096/fj.05-5560
CAS
Article
PubMed
PubMed Central
Google Scholar
Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860. doi:10.1161/circresaha.109.208314
CAS
Article
PubMed
Google Scholar
Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196
CAS
PubMed
Google Scholar
Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645,doi:10.1038/ncb1590
CAS
Article
PubMed
PubMed Central
Google Scholar
Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655
CAS
Article
PubMed
Google Scholar
Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99:7461–7466. doi:10.1073/pnas.102596199
CAS
Article
PubMed
PubMed Central
Google Scholar
Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131. doi:10.1161/01.RES.0000233356.10630.8a
CAS
Article
PubMed
Google Scholar
Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263. doi:10.1038/16711
CAS
Article
PubMed
Google Scholar
Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316. doi:10.1038/sj.emboj.7601417
CAS
Article
PubMed
PubMed Central
Google Scholar
Zou Y, Yamazaki T, Nakagawa K, Yamada H, Iriguchi N, Toko H, Takano H, Akazawa H, Nagai R, Komuro I (2002) Continuous blockade of L-type Ca2 + channels suppresses activation of calcineurin and development of cardiac hypertrophy in spontaneously hypertensive rats. Hypertens Res 25:117–124
CAS
Article
PubMed
Google Scholar
Ikeda K, Tojo K, Tokudome G, Akashi T, Hosoya T, Harada M, Nakagawa O, Nakao K (2000) Possible involvement of endothelin-1 in cardioprotective effects of benidipine. Hypertens Res 23:491–496
CAS
Article
PubMed
Google Scholar
Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Molkentin JD, Houser SR (2011) Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol 50:460–470. doi:10.1016/j.yjmcc.2010.11.012
CAS
Article
PubMed
Google Scholar
Ago T, Yang Y, Zhai P, Sadoshima J (2010) Nifedipine inhibits cardiac hypertrophy and left ventricular dysfunction in response to pressure overload. J Cardiovasc Transl Res 3:304–313. doi:10.1007/s12265-010-9182-x
Article
PubMed
PubMed Central
Google Scholar
Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59:392–398. doi:10.1016/j.neuron.2008.06.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Yeon SI, Kim JY, Yeon DS, Abramowitz J, Birnbaumer L, Muallem S, Lee YH (2014) Transient receptor potential canonical type 3 channels control the vascular contractility of mouse mesenteric arteries. PLoS ONE 9:e110413. doi:10.1371/journal.pone.0110413
Article
PubMed
PubMed Central
Google Scholar
Maillet M, van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14:38–48. doi:10.1038/nrm3495
CAS
Article
PubMed
PubMed Central
Google Scholar
Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989. doi:10.1128/mcb.25.16.6980-6989.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Park HW, Kim JY, Choi SK, Lee YH, Zeng W, Kim KH, Muallem S, Lee MG (2011) Serine-threonine kinase with-no-lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. Proc Natl Acad Sci U S A 108:10750–10755. doi:10.1073/pnas.1104271108
CAS
Article
PubMed
PubMed Central
Google Scholar
Rockman HA, Ono S, Ross RS, Jones LR, Karimi M, Bhargava V, Ross J Jr, Chien KR (1994) Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A 91:2694–2698
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101:13861–13866. doi:10.1073/pnas.0405908101
CAS
Article
PubMed
PubMed Central
Google Scholar
Gao H, Wang F, Wang W, Makarewich CA, Zhang H, Kubo H, Berretta RM, Barr LA, Molkentin JD, Houser SR (2012) Ca(2 +) influx through L-type Ca(2 +) channels and transient receptor potential channels activates pathological hypertrophy signaling. J Mol Cell Cardiol 53:657–667. doi:10.1016/j.yjmcc.2012.08.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Ambudkar IS, Brazer SC, Liu X, Lockwich T, Singh B (2004) Plasma membrane localization of TRPC channels: role of caveolar lipid rafts. Novartis Found Symp 258:63–70; discussion (70–74, 98–102, 263–266)
CAS
Article
PubMed
Google Scholar
Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ (2006) Localization of cardiac L-type Ca(2 +) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A 103:7500–7505. doi:10.1073/pnas.0503465103 discussion (70–74, 98–102, 263–266)
CAS
Article
PubMed
PubMed Central
Google Scholar
Saada N, Dai B, Echetebu C, Sarna SK, Palade P (2003) Smooth muscle uses another promoter to express primarily a form of human Cav1.2 L-type calcium channel different from the principal heart form. Biochem Biophys Res Commun 302:23–28
CAS
Article
PubMed
Google Scholar
Saada NI, Carrillo ED, Dai B, Wang WZ, Dettbarn C, Sanchez J, Palade P (2005) Expression of multiple CaV1.2 transcripts in rat tissues mediated by different promoters. Cell Calcium 37:301–309. doi:10.1016/j.ceca.2004.11.003
CAS
Article
PubMed
Google Scholar
Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP Jr, Birnbaumer L, Schnackenberg CG, Kass DA (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111:1551–1556. doi:10.1073/pnas.1308963111
CAS
Article
PubMed
PubMed Central
Google Scholar
Deschepper CF, Olson JL (1985) Otis M and Gallo-Payet N (2004) Characterization of blood pressure and morphological traits in cardiovascular-related organs in 13 different inbred mouse strains. J Appl Physiol 97:369–376. doi:10.1152/japplphysiol.00073.2004
Article
Google Scholar
Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW (2007) Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6 J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 292:H2119–H2130. doi:10.1152/ajpheart.00816.2006
CAS
Article
PubMed
Google Scholar
Thilo F, Loddenkemper C, Berg E, Zidek W, Tepel M (2009) Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension. Mod Pathol 22:426–430. doi:10.1038/modpathol.2008.200
CAS
Article
PubMed
Google Scholar
Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA 106:5400–5405. doi:10.1073/pnas.0808793106
CAS
Article
PubMed
PubMed Central
Google Scholar