Skip to main content

Resistance to pathologic cardiac hypertrophy and reduced expression of CaV1.2 in Trpc3-depleted mice

Abstract

Sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) reprograms cardiovascular cell fate, leading to cellular hypertrophy via Ca2+-calmodulin/calcineurin (Cn)/NFAT activation. Accumulating evidence suggests that transient receptor potential canonical (Trpc) channels play important roles in the development of pathologic cardiac hypertrophy. Here, we demonstrated that Trpc3 mediates pathologic cardiac hypertrophy in neurohumoral elevation via direct regulation of CaV1.2 expressions. Elevated PE (phenylephrine) was maintained in mice by continuous infusion using an osmotic pump. Wild-type (WT) mice, but not Trpc3 −/− showed a sudden decrease in blood pressure (BP) or death following elevation of BP under conditions of elevated PE. Trpc3 −/− mesenteric artery showed decreased PE-stimulated vasoconstriction. Analysis of morphology, function, and pathologic marker expression revealed that PE elevation caused pathologic cardiac hypertrophy in WT mice, which was prevented by deletion of Trpc3. Interestingly, protection by Trpc3 deletion seemed to be a result of reduced cardiac CaV1.2 expressions. Basal and PE induced increased expression of protein and mRNA of CaV1.2 was decreased in Trpc3 −/− heart. Accordingly, altered expression of CaV1.2 was observed by knockdown or stimulation of Trpc3 in cardiomyocytes. These findings suggest that Trpc3 is a mediator of pathologic cardiac hypertrophy not only through mediating part of the Ca2+ influx, but also through control of CaV1.2 expressions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

[Ca2+]i :

Intracellular calcium concentration

Trpc:

Transient receptor potential canonical

BP:

Blood pressure

PE:

Phenylephrine

AngII:

AngiotensinII

Cn/Ca2+ :

Calmodulin-dependent protein phosphatase calcineurin

NFAT:

Nuclear factor of activated T cells

ANF:

Atrial natriuretic factor

BNP:

Brain natriuretic peptide

β-MHC:

Β-myosin heavy chain

OAG:

1-Oleoyl-2-acetyl-sn-glycerol

References

  1. McMurray JJ (2010) Clinical practice. Systolic heart failure. N Engl J Med 362:228–238. doi:10.1056/NEJMcp0909392

    CAS  Article  PubMed  Google Scholar 

  2. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018. doi:10.1056/NEJMra021498

    Article  PubMed  Google Scholar 

  3. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107:7000–7005. doi:10.1073/pnas.1001825107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118. doi:10.1161/01.res.0000109415.17511.18

    CAS  Article  PubMed  Google Scholar 

  5. Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126. doi:10.1172/jci27702

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K, Kodama I, Yasui K (2008) T-type Ca2 + channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2 + channel blockers. Life Sci 82:554–560. doi:10.1016/j.lfs.2007.11.010

    CAS  Article  PubMed  Google Scholar 

  7. Sabourin J, Robin E, Raddatz E (2011) A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc Res 92:226–236. doi:10.1093/cvr/cvr167

    CAS  Article  PubMed  Google Scholar 

  8. Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA (2009) Physical and functional interaction between calcineurin and the cardiac L-type Ca2 + channel. Circ Res 105:51–60. doi:10.1161/circresaha.109.199828

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman JG (2002) The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest 109:1013–1020. doi:10.1172/jci14677

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Liao Y, Asakura M, Takashima S, Ogai A, Asano Y, Asanuma H, Minamino T, Tomoike H, Hori M, Kitakaze M (2005) Benidipine, a long-acting calcium channel blocker, inhibits cardiac remodeling in pressure-overloaded mice. Cardiovasc Res 65:879–888. doi:10.1016/j.cardiores.2004.11.006

    CAS  Article  PubMed  Google Scholar 

  11. Nuss HB, Houser SR (1994) Effect of duration of depolarisation on contraction of normal and hypertrophied feline ventricular myocytes. Cardiovasc Res 28:1482–1489

    CAS  Article  PubMed  Google Scholar 

  12. Cribbs LL, Martin BL, Schroder EA, Keller BB, Delisle BP, Satin J (2001) Identification of the t-type calcium channel (Ca(v)3.1d) in developing mouse heart. Circ Res 88:403–407

    CAS  Article  PubMed  Google Scholar 

  13. Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108:265–272. doi:10.1161/circresaha.110.225888

    CAS  Article  PubMed  Google Scholar 

  14. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030. doi:10.1161/circresaha.109.206581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20:1660–1670. doi:10.1096/fj.05-5560

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860. doi:10.1161/circresaha.109.208314

    CAS  Article  PubMed  Google Scholar 

  17. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196

    CAS  PubMed  Google Scholar 

  18. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645,doi:10.1038/ncb1590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    CAS  Article  PubMed  Google Scholar 

  20. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99:7461–7466. doi:10.1073/pnas.102596199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131. doi:10.1161/01.RES.0000233356.10630.8a

    CAS  Article  PubMed  Google Scholar 

  22. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263. doi:10.1038/16711

    CAS  Article  PubMed  Google Scholar 

  23. Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316. doi:10.1038/sj.emboj.7601417

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Zou Y, Yamazaki T, Nakagawa K, Yamada H, Iriguchi N, Toko H, Takano H, Akazawa H, Nagai R, Komuro I (2002) Continuous blockade of L-type Ca2 + channels suppresses activation of calcineurin and development of cardiac hypertrophy in spontaneously hypertensive rats. Hypertens Res 25:117–124

    CAS  Article  PubMed  Google Scholar 

  25. Ikeda K, Tojo K, Tokudome G, Akashi T, Hosoya T, Harada M, Nakagawa O, Nakao K (2000) Possible involvement of endothelin-1 in cardioprotective effects of benidipine. Hypertens Res 23:491–496

    CAS  Article  PubMed  Google Scholar 

  26. Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Molkentin JD, Houser SR (2011) Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol 50:460–470. doi:10.1016/j.yjmcc.2010.11.012

    CAS  Article  PubMed  Google Scholar 

  27. Ago T, Yang Y, Zhai P, Sadoshima J (2010) Nifedipine inhibits cardiac hypertrophy and left ventricular dysfunction in response to pressure overload. J Cardiovasc Transl Res 3:304–313. doi:10.1007/s12265-010-9182-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59:392–398. doi:10.1016/j.neuron.2008.06.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Yeon SI, Kim JY, Yeon DS, Abramowitz J, Birnbaumer L, Muallem S, Lee YH (2014) Transient receptor potential canonical type 3 channels control the vascular contractility of mouse mesenteric arteries. PLoS ONE 9:e110413. doi:10.1371/journal.pone.0110413

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maillet M, van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14:38–48. doi:10.1038/nrm3495

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989. doi:10.1128/mcb.25.16.6980-6989.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Park HW, Kim JY, Choi SK, Lee YH, Zeng W, Kim KH, Muallem S, Lee MG (2011) Serine-threonine kinase with-no-lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. Proc Natl Acad Sci U S A 108:10750–10755. doi:10.1073/pnas.1104271108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Rockman HA, Ono S, Ross RS, Jones LR, Karimi M, Bhargava V, Ross J Jr, Chien KR (1994) Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A 91:2694–2698

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101:13861–13866. doi:10.1073/pnas.0405908101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Gao H, Wang F, Wang W, Makarewich CA, Zhang H, Kubo H, Berretta RM, Barr LA, Molkentin JD, Houser SR (2012) Ca(2 +) influx through L-type Ca(2 +) channels and transient receptor potential channels activates pathological hypertrophy signaling. J Mol Cell Cardiol 53:657–667. doi:10.1016/j.yjmcc.2012.08.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Ambudkar IS, Brazer SC, Liu X, Lockwich T, Singh B (2004) Plasma membrane localization of TRPC channels: role of caveolar lipid rafts. Novartis Found Symp 258:63–70; discussion (70–74, 98–102, 263–266)

    CAS  Article  PubMed  Google Scholar 

  37. Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ (2006) Localization of cardiac L-type Ca(2 +) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A 103:7500–7505. doi:10.1073/pnas.0503465103 discussion (70–74, 98–102, 263–266)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Saada N, Dai B, Echetebu C, Sarna SK, Palade P (2003) Smooth muscle uses another promoter to express primarily a form of human Cav1.2 L-type calcium channel different from the principal heart form. Biochem Biophys Res Commun 302:23–28

    CAS  Article  PubMed  Google Scholar 

  39. Saada NI, Carrillo ED, Dai B, Wang WZ, Dettbarn C, Sanchez J, Palade P (2005) Expression of multiple CaV1.2 transcripts in rat tissues mediated by different promoters. Cell Calcium 37:301–309. doi:10.1016/j.ceca.2004.11.003

    CAS  Article  PubMed  Google Scholar 

  40. Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP Jr, Birnbaumer L, Schnackenberg CG, Kass DA (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111:1551–1556. doi:10.1073/pnas.1308963111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Deschepper CF, Olson JL (1985) Otis M and Gallo-Payet N (2004) Characterization of blood pressure and morphological traits in cardiovascular-related organs in 13 different inbred mouse strains. J Appl Physiol 97:369–376. doi:10.1152/japplphysiol.00073.2004

    Article  Google Scholar 

  42. Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW (2007) Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6 J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 292:H2119–H2130. doi:10.1152/ajpheart.00816.2006

    CAS  Article  PubMed  Google Scholar 

  43. Thilo F, Loddenkemper C, Berg E, Zidek W, Tepel M (2009) Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension. Mod Pathol 22:426–430. doi:10.1038/modpathol.2008.200

    CAS  Article  PubMed  Google Scholar 

  44. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA 106:5400–5405. doi:10.1073/pnas.0808793106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jeungsik In in CPEC (Cardiovascular Product Evaluation Center) at Yonsei University Health System, Jangwoo Cho in SI healthcare and Heinmiller, Andrew in VisualSonics Inc. for helping echocardiogram measurements and analysis. This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean government (No. NRF-2011-0029459 for JY KIM, MSIP-2013R1A3A2042197 for MG LEE) and the Intramural Research Program of the NIH (Project Z01-ES101864 to LB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Young Kim.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1324 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, J.W., Lee, Y.H., Yoen, SI. et al. Resistance to pathologic cardiac hypertrophy and reduced expression of CaV1.2 in Trpc3-depleted mice. Mol Cell Biochem 421, 55–65 (2016). https://doi.org/10.1007/s11010-016-2784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2784-0

Keywords

  • Transient receptor potential canonical channels 3
  • L-type Ca2+ channel
  • Pathologic cardiac hypertrophy
  • Ca2+ influx