Skip to main content

Advertisement

Log in

Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) signal is known to play important roles in controlling bone homeostasis. This study examined how oxidative stress affects the mineralization of embryonic stem (ES) cells by exposing them to glucose oxidase (GO), which continuously generates H2O2 at low concentrations. The roles of Nrf2/HO-1 and mitogen-activated protein kinases on osteogenesis in GO-exposed ES cells were also investigated. GO treatment at relatively low concentrations did not change the viability of ES cells, whereas it enhanced osteogenic differentiation and mineralization in the cells. GO treatment (1 mU/ml) augmented the induction of runt-related transcription factor 2 (Runx2), Nrf2, and HO-1 in ES cells. GO-mediated acceleration of Runx2 expression and mineralization was inhibited either by Nrf2 knockdown or by treating with 5 μM PD98059, an inhibitor of phospho-extracellular signal-regulated kinase (p-ERK). The GO-stimulated mineralization was also suppressed by treating the cells with reduced glutathione or catalase, but not by superoxide dismutase or N-acetyl-cysteine. Collectively, our results demonstrate that a mild oxidative stress activates Nrf2/HO-1 signaling and an ERK-mediated pathway, and facilitates the mineralization of ES cells with a corresponding increase in Runx2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Chandra A, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333

    Article  CAS  PubMed  Google Scholar 

  2. Forman HJ, Torres M (2001) Redox signaling in macrophages. Mol Aspects Med 22:189–216

    Article  CAS  PubMed  Google Scholar 

  3. Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  PubMed  Google Scholar 

  4. Choi EM, Kim GH, Lee YS (2009) Atractylodes japonica root extract protects osteoblastic MC3T3-E1 cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. Phytother Res 23:1537–1542

    Article  CAS  PubMed  Google Scholar 

  5. Kim YH, Lee YS, Choi EM (2010) Chrysoeriol isolated from Eurya cilliata leaves protects MC3T3-E1 cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. J Appl Toxicol 30:666–673

    Article  CAS  PubMed  Google Scholar 

  6. Timblin CR, Janssen YW, Mossman BT (1995) Transcriptional activation of the proto-oncogene c-jun by asbestos and H2O2 is directly related to increased proliferation and transformation of tracheal epithelial cells. Cancer Res 55:2723–2726

    CAS  PubMed  Google Scholar 

  7. Son YO, Jang YS, Heo JS, Chung WT, Choi KC, Lee JC (2009) Apoptosis-inducing factor plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells. Apoptosis 14:796–808

    Article  CAS  PubMed  Google Scholar 

  8. Barbouti A, Doulias PT, Nousis L, Tenopoulou M, Galaris D (2002) DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: bolus addition versus continuous generation of H2O2. Free Radic Biol Med 33:691–702

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Pi J, Woods CG, Andersen ME (2010) A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 244:84–97

    Article  CAS  PubMed  Google Scholar 

  10. Shin SM, Yang JH, Ki SH (2013) Role of the Nrf2-ARE pathway in liver diseases. Oxid Med Cell Longev 2013:763257

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen JS, Huang PH, Wang CH, Lin FY, Tsai HY, Wu TC, Lin SJ, Chen JW (2011) Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent mechanism, contributes to anti-atherogenesis and vascular protective effects of Ginkgo biloba extract. Atherosclerosis 214:301–309

    Article  CAS  PubMed  Google Scholar 

  12. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1–Nrf2–ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  13. Rana T, Schultz MA, Freeman ML, Biswas S (2012) Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radic Biol Med 53:2298–2307

    Article  CAS  PubMed  Google Scholar 

  14. Kim JH, Singhal V, Biswal S, Thimmulappa RK, Digirolamo DJ (2014) Nrf2 is required for normal postnatal bone acquisition in mice. Bone Res 2:14033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ibáñez L, Ferrándiz ML, Brines R, Guede D, Cuadrado A, Alcaraz MJ (2014) Effects of Nrf2 deficiency on bone microarchitecture in an experimental model of osteoporosis. Oxid Med Cell Longev 2014:726590

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hinoi E, Fujimori S, Wang L, Hojo H, Uno K, Yoneda Y (2006) Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem 281:18015–18024

    Article  CAS  PubMed  Google Scholar 

  17. Lin TH, Tang CH, Hung SY, Liu SH, Lin YM, Fu WM, Yang RS (2010) Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol 222:757–768

    CAS  PubMed  Google Scholar 

  18. Choe Y, Yu JY, Son YO, Park SM, Kim JG, Shi X, Lee JC (2012) Continuously generated H2O2 stimulates the proliferation and osteoblastic differentiation of human periodontal ligament fibroblasts. J Cell Biochem 113:1426–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  20. Kook SH, Kim KA, Ji H, Lee D, Lee JC (2015) Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway. Mol Cell Biochem 410:255–266

    Article  CAS  PubMed  Google Scholar 

  21. Kim KA, Kook SH, Song JH, Lee JC (2014) A phenolic acid phenethyl urea derivative protects against irradiation-induced osteoblast damage by modulating intracellular redox state. J Cell Biochem 115:1877–1887

    CAS  PubMed  Google Scholar 

  22. Iborra M, Moret I, Rausell F, Bastida G, Aguas M, Cerrillo E, Nos P, Beltrán B (2011) Role of oxidative stress and antioxidant enzymes in Crohn’s disease. Biochem Soc Trans 39:1102–1106

    Article  CAS  PubMed  Google Scholar 

  23. Monga J, Sharma M, Tailor N, Ganesh N (2011) Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of Ocimum in C(57)BL mice. Pharm Biol 49:428–436

    Article  PubMed  Google Scholar 

  24. Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z (2007) Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 295:45–52

    Article  CAS  PubMed  Google Scholar 

  25. Lee JC, Son YO, Choi KC, Jang YS (2006) Hydrogen peroxide induces apoptosis of BJAB cells due to formation of hydroxyl radicals via intracellular iron-mediated Fenton chemistry in glucose oxidase-mediated oxidative stress. Mol Cells 22:21–29

    CAS  PubMed  Google Scholar 

  26. Jun JH, Lee SH, Kwak HB, Lee ZH, Seo SB, Woo KM, Ryoo HM, Kim GS, Beak JH (2008) N-acetyl cysteine stimulates osteoblastic differentiation of mouse calvarial cells. J Cell Biochem 103:1246–1255

    Article  CAS  PubMed  Google Scholar 

  27. Jia P, Xu YJ, Zhang ZL, Li K, Li B, Zhang W, Yang H (2012) Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. J Orthop Res 30:1843–1852

    Article  CAS  PubMed  Google Scholar 

  28. Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, Franceschi RT (2009) Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem 284:32533–32543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120:2457–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rao GN (1996) Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates Ras and extracellular signal-regulated protein kinases group of mitogen-activated protein kinases. Oncogene 13:713–719

    CAS  PubMed  Google Scholar 

  31. Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227:421–430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by Fund of Biomedical Research Institute, Chonbuk National University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Youp Lee or Jeong-Chae Lee.

Additional information

Hyun-Jaung Sim and Jae-Hwan Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, HJ., Kim, JH., Kook, SH. et al. Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways. Mol Cell Biochem 419, 157–163 (2016). https://doi.org/10.1007/s11010-016-2760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2760-8

Keywords

Navigation