Skip to main content
Log in

MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Using an experimental model of NASH induced by a methionine–choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kucera O, Cervinkova Z (2014) Experimental models of non-alcoholic fatty liver disease in rats. World J Gastroenterol 20:8364–8376. doi:10.3748/wjg.v20.i26.8364

    Article  PubMed  PubMed Central  Google Scholar 

  2. Takahashi Y, Soejima Y, Fukusato T (2012) Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 18:2300–2308. doi:10.3748/wjg.v18.i19.2300

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xin H-G, Zhang B-B, Wu Z-Q et al (2014) Treatment with baicalein attenuates methionine–choline deficient diet-induced non-alcoholic steatohepatitis in rats. Eur J Pharmacol 738:310–318. doi:10.1016/j.ejphar.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  4. Sanches SCL, Ramalho LNZ, Augusto MJ et al (2015) nonalcoholic steatohepatitis: a search for factual animal models. Biomed Res Int. doi:10.1155/2015/574832

    PubMed  PubMed Central  Google Scholar 

  5. Veteläinen R, van Vliet A, van Gulik TM (2007) Essential pathogenic and metabolic differences in steatosis induced by choline or methionine–choline deficient diets in a rat model. J Gastroenterol Hepatol 22:1526–1533. doi:10.1111/j.1440-1746.2006.04701.x

    Article  PubMed  Google Scholar 

  6. Ota T, Takamura T, Kurita S et al (2007) Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 132:282–293. doi:10.1053/j.gastro.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  7. Simon Y, Kessler SM, Gemperlein K et al (2014) Elevated free cholesterol in a p62 overexpression model of non-alcoholic steatohepatitis. World J Gastroenterol 20:17839–17850. doi:10.3748/wjg.v20.i47.17839

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vallance P, Leone A, Calver A et al (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  CAS  PubMed  Google Scholar 

  9. Richir MC, Bouwman RH, Teerlink T et al (2008) The prominent role of the liver in the elimination of asymmetric dimethylarginine (ADMA) and the consequences of impaired hepatic function. JPEN J Parenter Enteral Nutr 32:613–621. doi:10.1177/0148607108321702

    Article  CAS  PubMed  Google Scholar 

  10. Kimoto M, Tsuji H, Ogawa T, Sasaoka K (1993) Detection of NG,NG-dimethylarginine dimethylaminohydrolase in the nitric oxide-generating systems of rats using monoclonal antibody. Arch Biochem Biophys 300:657–662. doi:10.1006/abbi.1993.1091

    Article  CAS  PubMed  Google Scholar 

  11. Kimoto M, Whitley GS, Tsuji H, Ogawa T (1995) Detection of NG,NG-dimethylarginine dimethylaminohydrolase in human tissues using a monoclonal antibody. J Biochem 117:237–238

    Article  CAS  PubMed  Google Scholar 

  12. Lentz SR, Rodionov RN, Dayal S (2003) Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atheroscler Suppl 4:61–65

    Article  CAS  PubMed  Google Scholar 

  13. Nijveldt RJ, Teerlink T, Siroen MPC et al (2003) The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA). Clin Nutr 22:17–22

    Article  CAS  PubMed  Google Scholar 

  14. Hattori Y, Kasai K, Gross SS (1999) Cationic amino acid transporter gene expression in cultured vascular smooth muscle cells and in rats. Am J Physiol 276:H2020–H2028

    CAS  PubMed  Google Scholar 

  15. Tain Y-L, Baylis C (2007) Determination of dimethylarginine dimethylaminohydrolase activity in the kidney. Kidney Int 72:886–889. doi:10.1038/sj.ki.5002446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  17. Ferrigno A, Rizzo V, Boncompagni E et al (2011) Machine perfusion at 20 °C reduces preservation damage to livers from non-heart beating donors. Cryobiology 62:152–158

    Article  CAS  PubMed  Google Scholar 

  18. Lyn-Cook LE, Lawton M, Tong M et al (2009) Hepatic ceramide may mediate brain insulin resistance and neurodegeneration in type 2 diabetes and non-alcoholic steatohepatitis. J Alzheimers Dis 16:715–729. doi:10.3233/JAD-2009-0984

    PubMed  PubMed Central  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  20. Chomczynski P, Mackey K (1995) Substitution of chloroform by bromo-chloropropane in the single-step method of RNA isolation. Anal Biochem 225:163–164. doi:10.1006/abio.1995.1126

    Article  CAS  PubMed  Google Scholar 

  21. Böger RH, Bode-Böger SM, Sydow K et al (2000) Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol 20:1557–1564

    Article  PubMed  Google Scholar 

  22. Kusku-Kiraz Z, Genc S, Bekpinar S et al (2015) Circulating levels of apelin, glucagon-like peptide and visfatin in hypercholesterolemic-hyperhomocysteinemic guinea-pigs: their relation with NO metabolism. Mol Cell Biochem 400:69–75. doi:10.1007/s11010-014-2263-4

    Article  CAS  PubMed  Google Scholar 

  23. Niculescu MD, Zeisel SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr 132:2333S–2335S

    CAS  PubMed  Google Scholar 

  24. Counts JL, Sarmiento JI, Harbison ML et al (1996) Cell proliferation and global methylation status changes in mouse liver after phenobarbital and/or choline-devoid, methionine-deficient diet administration. Carcinogenesis 17:1251–1257

    Article  CAS  PubMed  Google Scholar 

  25. Pacana T, Cazanave S, Verdianelli A et al (2015) Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS ONE 10:e0136822. doi:10.1371/journal.pone.0136822

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mas E, Danjoux M, Garcia V et al (2013) The pro-inflammatory action of tumour necrosis factor-α in non-alcoholic steatohepatitis is independent of the NSMAF gene product. Dig Liver Dis 45:147–154. doi:10.1016/j.dld.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  27. Leng Y-P, Qiu N, Fang W et al (2014) Involvement of increased endogenous asymmetric dimethylarginine in the hepatic endoplasmic reticulum stress of type 2 diabetic rats. PLoS ONE 9:e97125. doi:10.1371/journal.pone.0097125

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dayal S, Rodionov RN, Arning E et al (2008) Tissue-specific downregulation of dimethylarginine dimethylaminohydrolase in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:H816–H825. doi:10.1152/ajpheart.01348.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Magné J, Huneau J-F, Borderie D et al (2015) Plasma asymmetric and symmetric dimethylarginine in a rat model of endothelial dysfunction induced by acute hyperhomocysteinemia. Amino Acids. doi:10.1007/s00726-015-1959-4

    PubMed  Google Scholar 

  30. Aiken CT, Kaake RM, Wang X, Huang L (2011) Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics 10(R110):006924. doi:10.1074/mcp.M110.006924

    PubMed  Google Scholar 

  31. Tain Y-L, Huang L-T, Lin I-C et al (2010) Melatonin prevents hypertension and increased asymmetric dimethylarginine in young spontaneous hypertensive rats. J Pineal Res 49:390–398. doi:10.1111/j.1600-079X.2010.00806.x

    Article  CAS  PubMed  Google Scholar 

  32. Teerlink T (2005) ADMA metabolism and clearance. Vasc Med 10(Suppl 1):S73–S81

    Article  PubMed  Google Scholar 

  33. Chang K-A, Lin I-C, Sheen J-M et al (2013) Sex differences of oxidative stress to cholestatic liver and kidney injury in young rats. Pediatr Neonatol 54:95–101. doi:10.1016/j.pedneo.2012.11.008

    Article  PubMed  Google Scholar 

  34. Teerlink T, Luo Z, Palm F, Wilcox CS (2009) Cellular ADMA: regulation and action. Pharmacol Res 60:448–460. doi:10.1016/j.phrs.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denk GU, Soroka CJ, Takeyama Y et al (2004) Multidrug resistance-associated protein 4 is up-regulated in liver but down-regulated in kidney in obstructive cholestasis in the rat. J Hepatol 40:585–591. doi:10.1016/j.jhep.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  36. Lee J, Azzaroli F, Wang L et al (2001) Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology 121:1473–1484

    Article  CAS  PubMed  Google Scholar 

  37. Smith CL, Anthony S, Hubank M et al (2005) Effects of ADMA upon gene expression: an insight into the pathophysiological significance of raised plasma ADMA. PLoS Med 2:e264. doi:10.1371/journal.pmed.0020264

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sayki Arslan M, Turhan S, Dincer I et al (2014) A potential link between endothelial function, cardiovascular risk, and metabolic syndrome in patients with Non-alcoholic fatty liver disease. Diabetol Metab Syndr 6:109. doi:10.1186/1758-5996-6-109

    Article  PubMed  PubMed Central  Google Scholar 

  39. Colak Y, Senates E, Yesil A et al (2013) Assessment of endothelial function in patients with nonalcoholic fatty liver disease. Endocrine 43:100–107. doi:10.1007/s12020-012-9712-1

    Article  CAS  PubMed  Google Scholar 

  40. Dogru T, Genc H, Tapan S et al (2012) Elevated asymmetric dimethylarginine in plasma: an early marker for endothelial dysfunction in non-alcoholic fatty liver disease? Diabetes Res Clin Pract 96:47–52. doi:10.1016/j.diabres.2011.11.022

    Article  CAS  PubMed  Google Scholar 

  41. Kasumov T, Edmison JM, Dasarathy S et al (2011) Plasma levels of asymmetric dimethylarginine in patients with biopsy-proven nonalcoholic fatty liver disease. Metabolism 60:776–781. doi:10.1016/j.metabol.2010.07.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by Fondazione Cariplo, Grant No. 2011-0439. We thank Mr. Massimo Costa for his skilful technical assistance, Prof. Anthony Baldry for revising the English and Mrs. Nicoletta Breda for editing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariapia Vairetti.

Ethics declarations

Conflict of interest

The authors state that no conflict of interest or financial disclosure exists.

Additional information

Laura G. Di Pasqua and Clarissa Berardo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Pasqua, L.G., Berardo, C., Rizzo, V. et al. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters. Mol Cell Biochem 419, 147–155 (2016). https://doi.org/10.1007/s11010-016-2758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2758-2

Keywords

Navigation