Skip to main content
Log in

Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Secreted galectin-3 often gets incorporated into extracellular matrix and is utilized by cancer cells for spreading, movement, and metastatic dissemination. Here we investigate molecular mechanisms by which galectin-3 brings about these effects and compare it with fibronectin. Imaging of cells spread on fibronectin showed stress fibers throughout cell body, however, galectin-3-induced formation of parallel actin bundles in the lamellipodial region resulting in unique morphological features. FRAP analysis showed that the actin turnover in the lamellipodial region was much higher in cells spread on galectin-3 as compared to that on fibronectin. Rac1 activation is correlated with lamellipodial organization on both the substrates. Activation of Akt and Rac1, the regulators of actin dynamics, show inverse correlation with each other on both galectin-3 and fibronectin. Activation of Erk however, remained similar. Further, inhibition of activation of Akt and Erk inhibited spreading and motility of cells on galectin-3 but not on fibronectin. The results very comprehensively demonstrate distinct signaling pathways that regulate microfilament organization, lamellipodial structures, spreading, and movement of cells plated on galectin-3 as opposed to fibronectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bacac M, Stamenkovic I (2008) Metastatic cancer cell. Annu Rev Pathol 3:221–247. doi:10.1146/annurev.pathmechdis.3.121806.151523

    Article  CAS  PubMed  Google Scholar 

  2. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823. doi:10.1056/NEJMra0805239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dumic J, Dabelic S, Flogel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760(4):616–635. doi:10.1016/j.bbagen.2005.12.020

    Article  CAS  PubMed  Google Scholar 

  4. Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins. Structure and function of a large family of animal lectins. J Biol Chem 269(33):20807–20810

    CAS  PubMed  Google Scholar 

  5. Dange MC, Agarwal AK, Kalraiya RD (2015) Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Mol Cell Biochem 404(1–2):79–86. doi:10.1007/s11010-015-2367-5

    Article  CAS  PubMed  Google Scholar 

  6. Dange MC, Srinivasan N, More SK, Bane SM, Upadhya A, Ingle AD, Gude RP, Mukhopadhyaya R, Kalraiya RD (2014) Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells. Clin Exp Metastasis 31(6):661–673. doi:10.1007/s10585-014-9657-2

    Article  CAS  PubMed  Google Scholar 

  7. Krishnan V, Bane SM, Kawle PD, Naresh KN, Kalraiya RD (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22(1):11–24. doi:10.1007/s10585-005-2036-2

    Article  CAS  PubMed  Google Scholar 

  8. Srinivasan N, Bane SM, Ahire SD, Ingle AD, Kalraiya RD (2009) Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J 26(4):445–456. doi:10.1007/s10719-008-9194-9

    Article  CAS  PubMed  Google Scholar 

  9. More SK, Srinivasan N, Budnar S, Bane SM, Upadhya A, Thorat RA, Ingle AD, Chiplunkar SV, Kalraiya RD (2015) N-glycans and metastasis in galectin-3 transgenic mice. Biochem Biophys Res Commun 460(2):302–307. doi:10.1016/j.bbrc.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  10. Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavao MS (2014) Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 4:138. doi:10.3389/fonc.2014.00138

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lagana A, Goetz JG, Cheung P, Raz A, Dennis JW, Nabi IR (2006) Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol Cell Biol 26(8):3181–3193. doi:10.1128/MCB.26.8.3181-3193.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, Nabi IR (2008) Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol 180(6):1261–1275. doi:10.1083/jcb.200709019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boscher C, Nabi IR (2013) Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell 24(13):2134–2145. doi:10.1091/mbc.E13-02-0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saravanan C, Liu FT, Gipson IK, Panjwani N (2009) Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci 122(Pt 20):3684–3693. doi:10.1242/jcs.045674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Melo FH, Butera D, Junqueira Mde S, Hsu DK, da Silva AM, Liu FT, Santos MF, Chammas R (2011) The promigratory activity of the matricellular protein galectin-3 depends on the activation of PI-3 kinase. PLoS One 6(12):e29313. doi:10.1371/journal.pone.0029313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang K, Rankin CR, Nava P, Sumagin R, Kamekura R, Stowell SR, Feng M, Parkos CA, Nusrat A (2014) Galectin-3 regulates desmoglein-2 and intestinal epithelial intercellular adhesion. J Biol Chem 289(15):10510–10517. doi:10.1074/jbc.M113.538538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boscher C, Zheng YZ, Lakshminarayan R, Johannes L, Dennis JW, Foster LJ, Nabi IR (2012) Galectin-3 protein regulates mobility of N-cadherin and GM1 ganglioside at cell-cell junctions of mammary carcinoma cells. J Biol Chem 287(39):32940–32952. doi:10.1074/jbc.M112.353334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209(2):139–151. doi:10.1530/JOE-10-0377

    Article  CAS  PubMed  Google Scholar 

  19. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. doi:10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119(Pt 19):3901–3903. doi:10.1242/jcs.03098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115(Pt 20):3861–3863

    Article  CAS  PubMed  Google Scholar 

  22. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275(29):21785–21788. doi:10.1074/jbc.R000003200

    Article  CAS  PubMed  Google Scholar 

  23. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  24. Welch HC, Coadwell WJ, Stephens LR, Hawkins PT (2003) Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 546(1):93–97

    Article  CAS  PubMed  Google Scholar 

  25. Xue G, Hemmings BA (2013) PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst 105(6):393–404. doi:10.1093/jnci/djs648

    Article  CAS  PubMed  Google Scholar 

  26. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2(2):91–100. doi:10.1038/nrc727

    Article  PubMed  Google Scholar 

  27. Huveneers S, Danen EH (2009) Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci 122(Pt 8):1059–1069. doi:10.1242/jcs.039446

    Article  CAS  PubMed  Google Scholar 

  28. Ridley A (2000) Rho GTPases. Integrating integrin signaling. J Cell Biol 150(4):F107–F109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(Pt 2):159–163. doi:10.1242/jcs.018093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schlaepfer DD, Jones KC, Hunter T (1998) Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 18(5):2571–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schlaepfer DD, Mitra SK (2004) Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 14(1):92–101. doi:10.1016/j.gde.2003.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2(5):249–256. doi:10.1038/35010517

    Article  CAS  PubMed  Google Scholar 

  33. Wells A (2000) Tumor invasion: role of growth factor-induced cell motility. Adv Cancer Res 78:31–101

    Article  CAS  PubMed  Google Scholar 

  34. Agarwal AK, Srinivasan N, Godbole R, More SK, Budnar S, Gude RP, Kalraiya RD (2015) Role of tumor cell surface lysosome-associated membrane protein-1 (LAMP1) and its associated carbohydrates in lung metastasis. J Cancer Res Clin Oncol. doi:10.1007/s00432-015-1917-2

    PubMed  Google Scholar 

  35. Pellegrin S, Mellor H (2008) Rho GTPase activation assays. Curr Protoc Cell Biol Chapter 14:Unit 14 8. doi:10.1002/0471143030.cb1408s38

  36. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3):345–357

    Article  CAS  PubMed  Google Scholar 

  37. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Article  CAS  PubMed  Google Scholar 

  38. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  CAS  PubMed  Google Scholar 

  39. Small JV, Rottner K, Kaverina I, Anderson KI (1998) Assembling an actin cytoskeleton for cell attachment and movement. Biochim Biophys Acta 1404(3):271–281

    Article  CAS  PubMed  Google Scholar 

  40. Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: where motility begins. Trends Cell Biol 12(3):112–120

    Article  CAS  PubMed  Google Scholar 

  41. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114(Pt 15):2713–2722

    CAS  PubMed  Google Scholar 

  42. Yamada KM, Araki M (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 114(Pt 13):2375–2382

    CAS  PubMed  Google Scholar 

  43. Bozzuto G, Ruggieri P, Molinari A (2010) Molecular aspects of tumor cell migration and invasion. Annali dell’Istituto superiore di sanita 46(1):66–80. doi:10.4415/ANN_10_01_09

    CAS  PubMed  Google Scholar 

  44. Vicente-Manzanares M, Webb DJ, Horwitz AR (2005) Cell migration at a glance. J Cell Sci 118(Pt 21):4917–4919. doi:10.1242/jcs.02662

    Article  CAS  PubMed  Google Scholar 

  45. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17(5):559–564. doi:10.1016/j.ceb.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  46. Han S, Khuri FR, Roman J (2006) Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 66(1):315–323. doi:10.1158/0008-5472.CAN-05-2367

    Article  CAS  PubMed  Google Scholar 

  47. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS (1997) Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 17(8):4406–4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Levy Y, Ronen D, Bershadsky AD, Zick Y (2003) Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. J Biol Chem 278(16):14533–14542. doi:10.1074/jbc.M207380200

    Article  CAS  PubMed  Google Scholar 

  49. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254

    Article  CAS  PubMed  Google Scholar 

  50. Levy Y, Arbel-Goren R, Hadari YR, Eshhar S, Ronen D, Elhanany E, Geiger B, Zick Y (2001) Galectin-8 functions as a matricellular modulator of cell adhesion. J Biol Chem 276(33):31285–31295. doi:10.1074/jbc.M100340200

    Article  CAS  PubMed  Google Scholar 

  51. Przybylo M, Martuszewska D, Pochec E, Hoja-Lukowicz D, Litynska A (2007) Identification of proteins bearing beta1-6 branched N-glycans in human melanoma cell lines from different progression stages by tandem mass spectrometry analysis. Biochim Biophys Acta 1770(9):1427–1435. doi:10.1016/j.bbagen.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  52. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185

    Article  CAS  PubMed  Google Scholar 

  53. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62

    Article  CAS  PubMed  Google Scholar 

  54. Kwon T, Kwon DY, Chun J, Kim JH, Kang SS (2000) Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem 275(1):423–428

    Article  CAS  PubMed  Google Scholar 

  55. Schwarz J, Proff J, Havemeier A, Ladwein M, Rottner K, Barlag B, Pich A, Tatge H, Just I, Gerhard R (2012) Serine-71 phosphorylation of Rac1 modulates downstream signaling. PLoS One 7(9):e44358. doi:10.1371/journal.pone.0044358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cary LA, Han DC, Polte TR, Hanks SK, Guan JL (1998) Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 140(1):211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10(8):538–549. doi:10.1038/nrm2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G (2004) Two distinct actin networks drive the protrusion of migrating cells. Science 305(5691):1782–1786. doi:10.1126/science.1100533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We dedicate this work to the memory of Late Dr. Rajiv D. Kalraiya, who was responsible for planning and supervision of this work. We acknowledge Dr. Hakon Leffler for providing E. coli BL21 star strain expressing recombinant human galectin-3 and Dr. Sorab Dalal for providing E. coli strain expressing GST-PAK1 fusion protein. We acknowledge Urjita Joshi for signaling pathway experiments, Vaishali Khailaje, Tanuja Dighe, and Jairaj Kashale for help in microscopy experiments, and D. S. Chavan and A. M. Pawar for the technical help during galectin-3 purification. We thank Council of Scientific and Industrial Research (CSIR), India for providing the fellowship to Shyam K. More and Department of Biotechnology (DBT), India for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhada V. Chiplunkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Rajiv D. Kalraiya: Deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 1592 kb)

Supplementary material 2 (JPEG 2507 kb)

Supplementary material 3 (DOCX 14 kb)

Supplementary material 4 (MP4 966 kb)

Supplementary material 5 (MP4 214 kb)

Supplementary material 6 (DOCX 13 kb)

Supplementary material 7 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, S.K., Chiplunkar, S.V. & Kalraiya, R.D. Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin. Mol Cell Biochem 416, 179–191 (2016). https://doi.org/10.1007/s11010-016-2706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2706-1

Keywords

Navigation