Skip to main content
Log in

Oxidative stress does not play a primary role in the toxicity induced with clinical doses of doxorubicin in myocardial H9c2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The implication of oxidative stress as primary mechanism inducing doxorubicin (DOX) cardiotoxicity is still questionable as many in vitro studies implied supra-clinical drug doses or unreliable methodologies for reactive oxygen species (ROS) detection. The aim of this study was to clarify whether oxidative stress is involved in compliance with the conditions of clinical use of DOX, and using reliable tools for ROS detection. We examined the cytotoxic mechanisms of 2 μM DOX 1 day after the beginning of the treatment in differentiated H9c2 rat embryonic cardiac cells. Cells were exposed for 2 or 24 h with DOX to mimic a single chronic dosage or to favor accumulation, respectively. We found that apoptosis was prevalent in cells exposed for a short period with DOX: cells showed typical hallmarks as loss of anchorage ability, mitochondrial hyperpolarization followed by the collapse of mitochondrial activity, and nuclear condensation. Increasing the exposure period favored a shift to necrosis as the cells preferentially exhibited early DNA impairment and nuclear swelling. In either case, measuring the fluorescence lifetime of 1-pyrenebutyric acid or the intensities of dihydroethidium or amplex red showed a consistent pattern in ROS production which was a slight increased level far from representative of an oxidative stress. Moreover, pre-treatment with dexrazoxane provided a cytoprotective effect although it failed to detoxify ROS. Our data support that oxidative stress is unlikely to be the primary mechanism of DOX cardiac toxicity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2010) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  Google Scholar 

  2. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433

    Article  CAS  PubMed  Google Scholar 

  3. Cutts SM, Nudelman A, Rephaeli A, Phillips DR (2005) The power and potential of doxorubicin-DNA adducts. IUBMB Life 57:73–81

    Article  CAS  PubMed  Google Scholar 

  4. Jung K, Reszka R (2001) Mitochondria as subcellular targets for clinically useful anthracyclines. Adv Drug Deliv Rev 49:87–105

    Article  CAS  PubMed  Google Scholar 

  5. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns H, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52:1213–1225

    Article  CAS  PubMed  Google Scholar 

  6. Štěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, Šimůnek T (2013) Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal 18:899–929

    Article  PubMed Central  PubMed  Google Scholar 

  7. Alberts DS, Hess LM, Von Hoff DD, Dorr RT (2009) Pharmacology and therapeutics in gynecologic cancer. In: Barakat RR, Markman M, Randall ME (eds) Principles and practice of gynecologic oncology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 409–462

    Google Scholar 

  8. Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, Loyens A, Beauvillain JC, Bailly C (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23:7018–7030

    Article  CAS  PubMed  Google Scholar 

  9. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, Rossettin P, Ghigliotti G, Ballestrero A, Patrone F, Barsotti A, Brunelli C (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37:837–846

    Article  CAS  PubMed  Google Scholar 

  10. Tan X, Wang DB, Lu X, Wei H, Zhu R, Zhu SS, Jiang H, Yang ZJ (2010) Doxorubicin induces apoptosis in H9c2 cardiomyocytes: role of overexpressed eukaryotic translation initiation factor 5A. Biol Pharm Bull 33:1666–1672

    Article  CAS  PubMed  Google Scholar 

  11. Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U (2006) New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol 41:389–405

    Article  CAS  PubMed  Google Scholar 

  12. Ma J, Wang Y, Zheng D, Wei M, Xu H, Peng T (2013) Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovasc Res 97:77–87

    Article  CAS  PubMed  Google Scholar 

  13. Lipshultz SE, Sambatakos P, Maguire M, Karnik R, Ross SW, Franco VI, Miller TL (2014) Cardiotoxicity and cardioprotection in childhood cancer. Acta Haemathol 132:391–399

    Article  CAS  Google Scholar 

  14. Galetta F, Franzoni F, Cervetti G, Regoli F, Fallahi P, Tocchini L, Carpi A, Antonelli A, Petrini M, Santoro G (2010) In vitro and in vivo study on the antioxidant activity of dexrazoxane. Biomed Pharmacother 64:259–263

    Article  CAS  PubMed  Google Scholar 

  15. Junjing Z, Yan Z, Baolu Z (2010) Scavenging effects of dexrazoxane on free radicals. J Clin Biochem Nutr 47:238–245

    Article  PubMed Central  PubMed  Google Scholar 

  16. Green PS, Leeuwenburgh C (2002) Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. BBA Mol Basis Dis 1588:94–101

    Article  CAS  Google Scholar 

  17. Choi EH, Chang HJ, Cho JY, Chun HS (2007) Cytoprotective effect of anthocyanins against doxorubicin-induced toxicity in H9c2 cardiomyocytes in relation to their antioxidant activities. Food Chem Toxicol 45:1873–1881

    Article  CAS  PubMed  Google Scholar 

  18. Bernuzzi F, Recalcati S, Alberghini A, Cairo G (2009) Reactive oxygen species-independent apoptosis in doxorubicin-treated H9c2 cardiomyocytes: role for heme oxygenase-1 down-modulation. Chem-Biol Interact 177:12–20

    Article  CAS  PubMed  Google Scholar 

  19. Gilleron M, Marechal X, Montaigne D, Franczak J, Neviere R, Lancel S (2009) NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis. Biochem Biophys Res Commun 388:727–731

    Article  CAS  PubMed  Google Scholar 

  20. Pereira SL, Ramalho-Santos J, Branco AF, Sardão VM, Oliveira PJ, Carvalho RA (2011) Metabolic remodeling during H9c2 myoblast differentiation: relevance for in vitro toxicity studies. Cardiovasc Toxicol 11:180–190

    Article  CAS  PubMed  Google Scholar 

  21. Branco AF, Sampaio SF, Moreira AC, Holy J, Wallace KB, Baldeiras I, Oliveira PJ, Sardão VA (2012) Differentiation-dependent doxorubicin toxicity on H9c2 cardiomyoblasts. Cardiovasc Toxicol 12:326–340

    Article  CAS  PubMed  Google Scholar 

  22. Hasinoff BB, Schnabl KL, Marusak RA, Patel D, Huebner E (2003) Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovasc Toxicol 3:89–99

    Article  CAS  PubMed  Google Scholar 

  23. Corna G, Santambrogio P, Minotti G, Cairo G (2004) Doxorubicin paradoxically protects cardiomyocytes against iron-mediated toxicity: role of reactive oxygen species and ferritin. J Biol Chem 279:13738–13745

    Article  CAS  PubMed  Google Scholar 

  24. Ludke A, Sharma AK, Bagchi AK, Singal PK (2012) Subcellular basis of vitamin C protection against doxorubicin-induced changes in rat cardiomyocytes. Mol Cell Biochem 360:215–224

    Article  CAS  PubMed  Google Scholar 

  25. Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    Article  CAS  PubMed  Google Scholar 

  26. Bartosz G (2006) Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta 368:53–76

    Article  CAS  PubMed  Google Scholar 

  27. Gao J, Yang G, Pi R, Li R, Wang P, Zhang H, Le K, Chen S, Liu P (2008) Tanshinone IIA protects neonatal rat cardiomyocytes from adriamycin-induced apoptosis. Transl Res 151:79–87

    Article  CAS  PubMed  Google Scholar 

  28. Kalyanaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Shan PR, Xu WW, Huang ZQ, Pu J, Huang WJ (2014) Protective role of retinoid X receptor in H9c2 cardiomyocytes from hypoxia/reoxygenation injury in rats. World J Emerg Med 5:122–127

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rharass T, Vigo J, Salmon JM, Ribou AC (2006) Variation of 1-pyrenebutyric acid fluorescence lifetime in single living cells treated with molecules increasing or decreasing reactive oxygen species levels. Anal Biochem 357:1–8

    Article  CAS  PubMed  Google Scholar 

  31. Moné Y, Ribou AC, Cosseau C, Duval D, Théron A, Mitta G, Gourbal B (2011) An example of molecular co-evolution: reactive oxygen species (ROS) and ROS scavenger levels in Schistosoma mansoni/Biomphalaria glabrata interactions. Int J Parasitol 41:721–730

    Article  PubMed  Google Scholar 

  32. Ribou AC, Reinhardt K (2012) Reduced metabolic rate and oxygen radicals production in stored insect sperm. Proc R Soc B Biol Sci 279:2196–2203

    Article  CAS  Google Scholar 

  33. Savatier J, Rharass T, Canal C, Gbankoto A, Vigo J, Salmon JM, Ribou AC (2012) Adriamycin dose and time effects on cell cycle, cell death, and reactive oxygen species generation in leukaemia cells. Leukemia Res 36:791–798

    Article  CAS  Google Scholar 

  34. Imondi AR (1998) Preclinical models of cardiac protection and testing for effects of dexrazoxane on doxorubicin antitumor effects. Semin Oncol 25:22–30

    CAS  PubMed  Google Scholar 

  35. Schroeder PE, Jensen PB, Sehested M, Hofland KF, Langer SW, Hasinoff BB (2003) Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemother Pharmacol 52:167–174

    Article  CAS  PubMed  Google Scholar 

  36. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssière JL, Petit PX, Kroemer G (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181:1661–1672

    Article  CAS  PubMed  Google Scholar 

  37. Zhivotosky B, Orrenius S (2001) Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. Curr Protoc Cell Biol 12:18.3:18.3.1–18.3.23

  38. Napirei M, Wulf S, Mannherz HG (2004) Chromatin breakdown during necrosis by serum Dnase1 and the plasminogen system. Arthritis Rheum US 50:1873–1883

    Article  CAS  Google Scholar 

  39. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  CAS  PubMed  Google Scholar 

  40. Toné S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, Samejima K, Minatogawa Y, Earnshaw WC (2007) Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res 313:3635–3644

    Article  PubMed Central  PubMed  Google Scholar 

  41. Perl A, Gergely PJ, Nagy G, Koncz A, Banki K (2004) Mitochondrial hyperpolarization: a checkpoint of T-cell life, death and autoimmunity. Trends Immunol 25:360–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vásquez-Vivar J, Kalyanaraman B (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci USA 102:5727–5732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Zhao B, Summers FA, Mason RP (2012) Photooxidation of amplex red to resorufin: implications of exposing the amplex red assay to light. Free Radic Biol Med 53:1080–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Grossmann J, Walther K, Artinger M, Kiessling S, Schölmerich J (2001) Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 12:147–155

    CAS  PubMed  Google Scholar 

  45. McCarthy NJ, Evan GI (1997) Methods for detecting and quantifying apoptosis. In: de Pablo F, Ferrús A, Stern CD (eds) Cellular and molecular procedures in developmental biology, vol 36., Current topics in developmental biologyAcademic Press, San Diego, pp 259–278

    Google Scholar 

  46. Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzami N, Marzo I, Geuskens M, Kroemer G (1997) The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15:1573–1581

    Article  CAS  PubMed  Google Scholar 

  47. Lemasters JJ (1999) Mechanisms of hepatic toxicity. V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 276:G1–G6

    CAS  PubMed  Google Scholar 

  48. Yang F, Teves SS, Kemp CJ, Henikoff S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. BBA Rev Cancer 1845:84–89

    CAS  Google Scholar 

  49. Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Gülden M, Jess A, Kammann J, Maser E, Seibert H (2010) Cytotoxic potency of H2O2 in cell cultures: impact of cell concentration and exposure time. Free Radic Biol Med 49:1298–1305

    Article  PubMed  Google Scholar 

  51. Antunes F, Cadenas E (2000) Estimation of H2O2 gradients across biomembranes. FEBS Lett 475:121–126

    Article  CAS  PubMed  Google Scholar 

  52. Antunes F, Cadenas E (2001) Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 30:1008–1018

    Article  CAS  PubMed  Google Scholar 

  53. Horwitz LD, Leff JA (1995) Catalase and hydrogen peroxide cytotoxicity in cultured cardiac myocytes. J Mol Cell Cardiol 27:909–915

    Article  CAS  PubMed  Google Scholar 

  54. Kaiserová H, den Hartog GJM, Šimůnek T, Schröterová L, Kvasničková E, Bast A (2006) Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin. Br J Pharmacol 149:920–930

    Article  PubMed Central  PubMed  Google Scholar 

  55. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Majno G, Joris I (1995) Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Zeiss CJ (2003) The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 40:481–495

    Article  CAS  PubMed  Google Scholar 

  58. Arends MJ, McGregor AH, Wyllie AH (1994) Apoptosis is inversely related to necrosis and determines net growth in tumors bearing constitutively expressed myc, ras, and HPV oncogenes. Am J Pathol 144:1045–1057

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Hasinoff BB, Schroeder PE, Patel D (2003) The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Mol Pharmacol 64:670–678

    Article  CAS  PubMed  Google Scholar 

  60. Hašková P, Koubková L, Vávrová A, Macková E, Hrušková K, Kovaříková P, Vávrová K, Šimůnek T (2011) Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicology 289:122–131

    Article  PubMed  Google Scholar 

  61. Lebrecht D, Kokkori A, Ketelsen UP, Setzer B, Walker UA (2005) Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathol 207:436–444

    Article  CAS  PubMed  Google Scholar 

  62. Ito H, Miller SC, Billingham ME, Akimoto H, Torti SV, Wade R, Gahlmann R, Lyons G, Kedes L, Torti FM (1990) Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc Natl Acad Sci USA 87:4275–4279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Dudnakova TV, Lakomkin VL, Tsyplenkova VG, Shekhonin BV, Shirinsky VP, Kapelko VI (2003) Alterations in myocardial cytoskeletal and regulatory protein expression following a single doxorubicin injection. J Cardiovasc Pharmacol 41:788–794

    Article  CAS  PubMed  Google Scholar 

  64. Horie T, Ono K, Nishi H, Nagao K, Kinoshita M, Watanabe S, Kuwabara Y, Nakashima Y, Takanabe-Mori R, Nishi E, Hasegawa K, Kita T, Kimura T (2010) Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res 87:656–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Classen S, Olland S, Berger JM (2003) Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci U S A 100:10629–10634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF (2007) Topoisomerase IIβ-mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839–8846

    Article  CAS  PubMed  Google Scholar 

  67. Martin E, Thougaard AV, Grauslund M, Jensen PB, Bjorkling F, Hasinoff BB, Tjørnelund J, Sehested M, Jensen LH (2009) Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy. Toxicology 255:72–79

    Article  CAS  PubMed  Google Scholar 

  68. Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Gödtel-Armbrust U, Wojnowski L (2014) Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer 14:842

    Article  PubMed Central  PubMed  Google Scholar 

  69. Lai R, Long Y, Li Q, Zhang X, Rong T (2011) Oxidative stress markers may not be early markers of doxorubicin-induced cardiotoxicity in rabbits. Exp Ther Med 2:947–950

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121:151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of our friend and colleague Jean Vigo who passed away in July 2015. His enthusiasm and tireless activity on improving instruments for fluorescence lifetime detection will remain a model. We would like to thank Christoph Grunau for proof reading the article. This work was supported by funds from the French “Ligue Nationale Contre le Cancer” (Comités des Pyrénées-Orientales et du Gard) to T.R., A.G., C.C., A.B., J.V. and A.C.R., the ERASMUS program to G.K., and by Helmholtz Young Investigator Program to T.R. and D.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Cécile Ribou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 684 kb)

Supplementary material 2 (PDF 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rharass, T., Gbankoto, A., Canal, C. et al. Oxidative stress does not play a primary role in the toxicity induced with clinical doses of doxorubicin in myocardial H9c2 cells. Mol Cell Biochem 413, 199–215 (2016). https://doi.org/10.1007/s11010-016-2653-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2653-x

Keywords

Navigation