Skip to main content
Log in

CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNA-1 (miR-1) is approved involved in cardiac hypertrophy, but the underlying molecular mechanisms of miR-1 in cardiac hypertrophy are not well elucidated. The present study aimed to investigate the potential role of miR-1 in modulating CDKs-Rb pathway during cardiomyocyte hypertrophy. A rat model of hypertrophy was established with abdominal aortic constriction, and a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocytes (NRVCs). We demonstrated that miR-1 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes. Dual luciferase reporter assays revealed that miR-1 interacted with the 3′UTR of CDK6, and miR-1 was verified to inhibit CDK6 expression at the posttranscriptional level. CDK6 protein expression was observed increased in hypertrophic myocardium and hypertrophic cardiomyocytes. Morover, miR-1 mimic, in parallel to CDK6 siRNA, could inhibit PE-induced hypertrophy of NRVCs, with decreases in cell size, newly transcribed RNA, expressions of ANF and β-MHC, and the phosphorylated pRb. Taken together, our results reveal that derepression of CDK6 and activation of Rb pathway contributes to the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Da Costa Martins PA, De Windt LJ (2012) MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res 93:563–572

    Article  PubMed  Google Scholar 

  3. Callis TE, Pandya K, Seok HY et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sayed D, Hong C, Chen IY et al (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424

    Article  PubMed  CAS  Google Scholar 

  6. Tatsuguchi M, Seok HY, Callis TE et al (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Li Q, Song XW, Zou J et al (2010) Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci 123:2444–2452

    Article  PubMed  CAS  Google Scholar 

  8. Curcio A, Torella D, Iaconetti C et al (2013) MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS ONE 8:e70158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Ikeda S, He A, Kong SW et al (2009) MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29:2193–2204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Sadoshima J, Aoki H, Izumo S (1997) Angiotensin II and serum differentially regulate expression of cyclins, activity of cyclin-dependent kinases, and phosphorylation of retinoblastoma gene product in neonatal cardiac myocytes. Circ Res 80:228–241

    Article  PubMed  CAS  Google Scholar 

  11. Li JM, Poolman RA, Brooks G (1998) Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am J Physiol 275:H814–H822

    PubMed  CAS  Google Scholar 

  12. Hinrichsen R, Hansen AH, Haunsø S et al (2008) Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy. Cell Prolif 41:813–829

    Article  PubMed  CAS  Google Scholar 

  13. Phrommintikul A, Tran L, Kompa A et al (2008) Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am J Physiol Heart Circ Physiol 294:H1804–H1814

    Article  PubMed  CAS  Google Scholar 

  14. Communal C, Singh K, Pimentel D et al (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    Article  PubMed  CAS  Google Scholar 

  15. Shan ZX, Lin QX, Deng CY et al (2010) miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett 584:3592–3600

    Article  PubMed  CAS  Google Scholar 

  16. Nozato T, Ito H, Tamamori M et al (2000) G1 cyclins are involved in the mechanism of cardiac myocyte hypertrophy induced by angiotensin II. Jpn Circ J 64:595–601

    Article  PubMed  CAS  Google Scholar 

  17. Busk PK, Bartkova J, Strøm CC et al (2002) Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res 56:64–75

    Article  PubMed  CAS  Google Scholar 

  18. Hotchkiss A, Robinson J, MacLean J et al (2012) Role of D-type cyclins in heart development and disease. Can J Physiol Pharmacol 90:1197–1207

    Article  PubMed  CAS  Google Scholar 

  19. Tamamori M, Ito H, Hiroe M et al (1998) Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. Am J Physiol 275:H2036–H2040

    PubMed  CAS  Google Scholar 

  20. Nozato T, Ito H, Watanabe M et al (2001) Overexpression of cdk inhibitor p16INK4a by adenovirus vector inhibits cardiac hypertrophy in vitro and in vivo: a novel strategy for the gene therapy of cardiac hypertrophy. J Mol Cell Cardiol 33:1493–1504

    Article  PubMed  CAS  Google Scholar 

  21. Vara D, Bicknell KA, Coxon CH et al (2003) Inhibition of E2F abrogates the development of cardiac myocyte hypertrophy. J Biol Chem 278:21388–21394

    Article  PubMed  CAS  Google Scholar 

  22. Rommel C, Clarke BA, Zimmermann S et al (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741

    Article  PubMed  CAS  Google Scholar 

  23. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  PubMed  CAS  Google Scholar 

  24. Huang S, Zou X, Zhu JN et al (2015) Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med 19:608–619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Xiao H, Zeng J, Li H et al (2015) MiR-1 downregulation correlates with poor survival in clear cell renal cell carcinoma where it interferes with cell cycle regulation and metastasis. Oncotarget 6:13201–13215

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from The National Natural Science Foundation of China (81470439, 81270222, 81070102) and by Grants from Guangdong Province (No. 2014A030313635, S2012010009453, S2011020005911, 1563000369, and A2015187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Shan.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Wei-wei Yuan and Chun-mei Tang are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1796 kb)

Supplementary material 2 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Tang, C., Zhu, W. et al. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem 412, 289–296 (2016). https://doi.org/10.1007/s11010-015-2635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2635-4

Keywords

Navigation