Skip to main content

Advertisement

Log in

PPIA rs6850: A > G single-nucleotide polymorphism is associated with raised plasma cyclophilin A levels in patients with coronary artery disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Plasma level of cyclophilin A is a promising marker of vascular disease in patients with type 2 diabetes. Genetic variants in the peptidylprolyl isomerase A gene, encoding human cyclophilin may alter protein synthesis thus affecting its activity, function, and circulating plasma levels. We examined the effect of single-nucleotide polymorphisms (SNPs) within the PPIA gene on plasma levels of cyclophilin A and coupled this with status of vascular disease in patients with and without type 2 diabetes in 212 South Indian subjects. The regulatory region of PPIA gene was sequenced for SNPs. The association of SNPs with known blood markers of type 2 diabetes and coronary artery disease such as HbA1c, low- and high-density lipoproteins, triglycerides, fasting and postprandial blood sugar levels, and cyclophilin A were probed. We identified three SNPs namely, rs6850: A > G; (AG/−) c.*227_*228delAG and (−/T) c.*318_*319insT. Welchs two-sample t test indicated an association of SNP rs6850: A > G, located at the 5′ UTR region with increased plasma levels of cyclophilin A in patients with coronary artery disease and with coronary artery disease associated with diabetes. The presence of rs6850: A > G variant was significantly associated with coronary artery disease irrespective of whether the patients had diabetes or not. In silico analysis of the sequence using different tools and matrix libraries did not predict any significant differential binding sites for rs6850: A > G, c.*227_*228delAG and c.*318_*319insT. Our results indicate that the SNP rs6850: A > G is associated with increased risk for elevated plasma levels of cyclophilin A and coronary artery disease in patients with and without type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PPIA:

Peptidyl-prolyl isomerase A

CAD:

Coronary artery disease

DM:

Diabetes mellitus

DM + CAD:

Diabetes mellitus + coronary artery disease

UTR:

Untranslated region

EDTA:

Ethylene diamine tetra acetic acid

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fasting blood sugar

HbA1c:

Glycated hemoglobin

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

Tris HCl:

Tris hydrochloric acid

NaCl:

Sodium chloride

SDS:

Sodium dodecyl sulfate

TRANSFAC:

Transcription Factor database

ANOVA:

Analysis of variance

CI:

Confidence intervals

OR:

Odds ratios

CPBP:

Core promoter binding protein

LEF-1:

Lymphoid enhancer-binding factor-1

VSMCs:

Vascular smooth muscle cells

GWAS:

Genome-wide association study

TFBS:

Transcription factor binding sites

References

  1. Ramachandran S, Venugopal A, Kutty VR et al (2014) Plasma level of cyclophilin A is increased in patients with type 2 diabetes mellitus and suggests presence of vascular disease. Cardiovasc Diabetol 13:38

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bergsma DJ, Eder C, Gross M et al (1991) The cyclophilin multigene family of peptidyl-prolyl isomerases characterization of three separate human isoforms. J Biol Chem 266:23204–23214

    PubMed  CAS  Google Scholar 

  3. Matouschek A, Rospert S, Schmid K et al (1995) Cyclophilin catalyzes protein folding in yeast mitochondria. Proc Natl Acad Sci USA 92:6319–6323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Nigro P, Pompilio G, Capogrossi MC (2013) Cyclophilin A: a key player for human disease. Cell Death Dis 4:e888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Pflügl G, Kallen J, Schirmer T et al (1993) X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature 361:91–94

    Article  PubMed  Google Scholar 

  6. Haendler B, Hofer E (1990) Characterization of the human cyclophilin gene and of related processed pseudogenes. Eur J Biochem 190:477–482

    Article  PubMed  CAS  Google Scholar 

  7. Ghatak S, Muthukumaran RB, Nachimuthu SK (2013) Simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J Biomol Tech 24:224–231

    PubMed  PubMed Central  Google Scholar 

  8. An P, Wang LH, Hutcheson-Dilks H et al (2007) Regulatory polymorphisms in the cyclophilin A gene, PPIA accelerate progression to AIDS. PLoS Pathog 3:e88

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rebhan M, Chalifa Caspi V, Prilusky J et al (1998) GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14:656–664

    Article  PubMed  CAS  Google Scholar 

  10. Safran M, Chalifa Caspi V, Shmueli O, Olender T et al (2003) Human gene-centric databases at the Weizmann Institute of Science: GeneCards, UDB, CroW21, and HORDE. Nucl Acids Res 31:142–146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Surendran S, Girijamma A, Nair R et al (2014) Forkhead box C2 promoter variant c.-512C.T is associated with increased susceptibility to chronic venous diseases. PLoS One 9:e90682

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matys V, Kel-Margoulis OV, Fricke E et al (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucl Acids Res 34:D108–D110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Berger MF, Philippakis AA, Qureshi AM et al (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24:1429–1435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Messeguer X, Escudero R, Farré D et al (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334

    Article  PubMed  CAS  Google Scholar 

  15. Farre D, Roset R, Huerta M et al (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucl Acids Res 31:3651–3653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Chang TH, Huang HY, Hsu JB et al (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinform 14:2105–2114

    Google Scholar 

  17. Agarwal V, Bell GW, Nam J et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005

    Article  Google Scholar 

  18. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna 2012

    Google Scholar 

  19. Palacín M, Rodríguez I, García-Castro M et al (2008) A search for cyclophilin-A gene (PPIA) variation and its contribution to the risk of atherosclerosis and myocardial infarction. Int J Immunogenet 35:159–164

    Article  PubMed  Google Scholar 

  20. Ramachandran S, Venugopal A, Sathisha K et al (2012) Proteomic profiling of high glucose primed monocytes identifies cyclophilin A as a potential secretory marker of inflammation in type 2 diabetes. Proteomics 12:2808–2821

    Article  PubMed  CAS  Google Scholar 

  21. Ley K, Miller YI, Hedrick CC (2011) Monocyte and Macrophage Dynamics during Atherogenesis. Arterioscler Thromb Vasc Biol 31:1506–1516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Billinch A, Winkier G, Aschauer H et al (1997) Presence of cyclophilin A in synovial fluids of patients with rheumatoid arthritis. J Exp Med 185:975–980

    Article  Google Scholar 

  23. Satoh K, Nigro P, Berk BC (2010) Oxidative stress and vascular smooth muscle cell growth: a mechanistic linkage by Cyclophilin A. Antioxid Redox Signal 12:675–682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Soe NN, Sowden M, Baskaran P et al (2014) Acetylation of cyclophilin A is required for its secretion and vascular cell activation. Cardiovasc Res 101:444–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Ramachandran S, Kartha CC (2012) Cyclophilin-A: a potential screening marker for vascular disease in type-2 diabetes. Can J Physiol Pharmacol 90:1005–1015

    Article  PubMed  CAS  Google Scholar 

  26. Jin ZG, Berk BC (2004) Role of secreted oxidative stress induced factors (SOXFs) in the pathogenesis of atherosclerosis. Arch Mal Coeur Vaiss 97:1256–1259

    PubMed  CAS  Google Scholar 

  27. Schunkert H, Konig IR, Thompson J et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Preuss M, Konig JR, Thompson JR et al (2010) Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study: a genome-wide association meta-analysis involving more than 22,000 cases and 60,000 controls. Circ Cardiovasc Genet 3:475–483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14000 cases of seven common diseases and 3000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  30. Erdmann J, Grosshennig A, Braund PS et al (2009) New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet 41:280–282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Gudbjartsson DF, Bjornsdottir US, Halap E et al (2009) Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 41:342–347

    Article  PubMed  CAS  Google Scholar 

  32. Tregouet DA, Konig IR, Erdmann J et al (2009) Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet 41:283–285

    Article  PubMed  CAS  Google Scholar 

  33. Coronary Artery Disease (C4D) Genetics Consortium (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43:339–344

    Article  Google Scholar 

  34. Slavin D, Sapin V, Lopez-Diaz F et al (2014) The Krüppel-like core promoter binding protein gene is primarily expressed in placenta during mouse development. Oncotarget 5:649–658

    Article  Google Scholar 

  35. Albano F, Zagaria A, Anelli L et al (2013) Lymphoid enhancer binding factor-1 (LEF1) expression as a prognostic factor in adult acute promyelocytic leukemia. Oncotarget 5:649–658

    Article  PubMed Central  Google Scholar 

  36. Sonis ST, Keefe DM (2013) Pathobiology of cancer regimen related toxicities. Springer, New York. doi:10.1007/978-1-4614-5438

    Book  Google Scholar 

  37. Bleiber G, May M, Martinez R et al (2005) Use of a combined ex vivo/in vivo population approach for screening of human genes involved in the human immunodeficiency virus type 1 life cycle for variants influencing disease progression. J Virol 79:12674–12680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Rezzani R, Favero G, Stacchiotti A et al (2013) Endothelial and vascular smooth muscle cell dysfunction mediated by cyclophilin A and the atheroprotective effects of melatonin. Life Sci 92:875–882

    Article  PubMed  CAS  Google Scholar 

  39. Satoh K, Nigro P, Matoba T et al (2009) Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat Med 15:649–656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Seizer P, Schonberger T, Schott M et al (2010) EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis 209:51–57

    Article  PubMed  CAS  Google Scholar 

  41. Coppinger JA, Cagney G, Toomey S et al (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104

    Article  PubMed  CAS  Google Scholar 

  42. Elvers M, Herrmann A, Seizer P et al (2012) Intracellular cyclophilin A is an important Ca(2þ) regulator in platelets and critically involved in arterial thrombus formation. Blood 120:1317–1326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Indian Council of Medical Research, Ministry of Health, Government of India (No 5/4/1-4/2013/NCD-II). Financial support from Director, Rajiv Gandhi Centre for Biotechnology is also acknowledged.

Authors contributions

VA drafted the manuscript and carried out all molecular biology experiments; RK designed, analyzed, and interpreted statistical data. VKA and RG performed bioinformatics analysis and interpreted data. DG and SS were involved in acquisition of data and drafting the manuscript. KRS, NSP, and AM contributed to design of the study and acquisition of data. CCK and SR were equally involved in conceiving the study, its design, interpretation of results, and critically reviewed and revised the manuscript before submission. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. C. Kartha or Surya Ramachandran.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinitha, A., Kutty, V.R., Vivekanand, A. et al. PPIA rs6850: A > G single-nucleotide polymorphism is associated with raised plasma cyclophilin A levels in patients with coronary artery disease. Mol Cell Biochem 412, 259–268 (2016). https://doi.org/10.1007/s11010-015-2632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2632-7

Keywords

Navigation