Molecular and Cellular Biochemistry

, Volume 412, Issue 1–2, pp 235–245 | Cite as

Overexpression of miR-335 confers cell proliferation and tumour growth to colorectal carcinoma cells

  • Yanxia Lu
  • Hui Yang
  • Li Yuan
  • Guobing Liu
  • Chao Zhang
  • Min Hong
  • Yan Liu
  • Min Zhou
  • Fang Chen
  • Xuenong LiEmail author


The involvement of miR-335 in csolorectal cancer (CRC) development remains controversial. Here, we found that miR-335 was highly up-regulated in CRC specimens relative to normal mucosa, and high miR-335 expression level was markedly associated with the tumour size and differentiation of CRC. The overexpression of miR-335 in CRC cells facilitated cell proliferation in vitro and tumour growth in vivo. RASA1 was validated as a target of miR-335 that was downregulation in CRC. Forced expression of miR-335 silenced RASA1 and triggered Ras/ERK cascade in CRC. Together, miR-335-RASA1 contributes to cell growth in CRC, and elucidation of downstream pathway will provide new insights into the molecular mechanisms of CRC progression.


miR-335 Colorectal carcinoma RASA1 Proliferation Tumour growth 



Colorectal carcinoma




Untranslated regions


RAS p21 protein activator 1


Standard deviation


Cell counting kit-8


Green fluorescent protein



This work was supported by the National Natural Science Foundation of China (Nos 81272758 and 81302158), and the Natural Science Foundation of Guangdong Province (S2012010009351).


  1. 1.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zhang L, Ren X, Alt E, Bai X, Huang S et al (2010) Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464:1058–1061PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ et al (2013) ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12:761–773PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250PubMedCrossRefGoogle Scholar
  5. 5.
    Ashley N, Yeung T, Bodmer WF (2013) Stem cell differentiation and lumen formation in colorectal cancer cell lines and primary tumours. Cancer Res 73:5798–5809PubMedCrossRefGoogle Scholar
  6. 6.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632PubMedCrossRefGoogle Scholar
  9. 9.
    Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H et al (2009) High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol 15:2089–2096PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10:202–210PubMedCrossRefGoogle Scholar
  11. 11.
    Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272:59–73PubMedCrossRefGoogle Scholar
  12. 12.
    Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Xu Y, Zhao F, Wang Z, Song Y, Luo Y et al (2012) MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 31:1398–1407PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shi L, Jiang D, Sun G, Wan Y, Zhang S et al (2012) miR-335 promotes cell proliferation by directly targeting Rb1 in meningiomas. J Neurooncol 110:155–162PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou C, Liu G, Wang L, Lu Y, Yuan L et al (2013) MiR-339-5p regulates the growth, colony formation and metastasis of colorectal cancer cells by targeting PRL-1. PLoS ONE 8:e63142PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Vickers MM, Bar J, Gorn-Hondermann I, Yarom N, Daneshmand M et al (2012) Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis 29:123–132PubMedCrossRefGoogle Scholar
  17. 17.
    McCormick F (1989) GTPase activating protein Signal transmitter and signal terminator. Cell 56:5–8PubMedCrossRefGoogle Scholar
  18. 18.
    Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22PubMedCrossRefGoogle Scholar
  19. 19.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  20. 20.
    van Schooneveld E, Wouters MC, Van der Auwera I, Peeters DJ, Wildiers H et al (2012) Expression profiling of cancerous and normal breast tissues identifies microRNAs that are differentially expressed in serum from patients with (metastatic) breast cancer and healthy volunteers. Breast Cancer Res 14:R34PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H et al (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25:2537–2545PubMedCrossRefGoogle Scholar
  22. 22.
    Shu M, Zheng X, Wu S, Lu H, Leng T et al (2011) Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer 10:59PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Xiong SW, Lin TX, Xu KW, Dong W, Ling XH et al (2013) MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. Pathol Oncol Res 19:529–537PubMedCrossRefGoogle Scholar
  24. 24.
    Gao L, Yang Y, Xu H, Liu R, Li D et al (2014) miR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumour Biol 35:8309–8318PubMedCrossRefGoogle Scholar
  25. 25.
    Giraldez MD, Lozano JJ, Ramirez G, Hijona E, Bujanda L et al (2013) Circulating microRNAs as biomarkers of colorectal cancer: results from a genome-wide profiling and validation study. Clin Gastroenterol Hepatol 11(681–688):e683Google Scholar
  26. 26.
    Sun Z, Zhang Z, Liu Z, Qiu B, Liu K et al (2014) MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol 31:1–10Google Scholar
  27. 27.
    Tocque B, Delumeau I, Parker F, Maurier F, Multon MC et al (1997) Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal 9:153–158PubMedCrossRefGoogle Scholar
  28. 28.
    Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36:320–328PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Choi C, Helfman DM (2013) The Ras-ERK pathway modulates cytoskeleton organization, cell motility and lung metastasis signature genes in MDA-MB-231 LM2. Oncogene 33:3668–3676PubMedCrossRefGoogle Scholar
  30. 30.
    Sheppard KE, Cullinane C, Hannan KM, Wall M, Chan J et al (2013) Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors. Eur J Cancer 49:3936–3944PubMedCrossRefGoogle Scholar
  31. 31.
    Renshaw J, Taylor KR, Bishop R, Valenti M, De Haven Brandon A et al (2013) Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin Cancer Res 19:5940–5951PubMedCrossRefGoogle Scholar
  32. 32.
    Molina JR, Adjei AA (2006) The Ras/Raf/MAPK pathway. J Thorac Oncol 1:7–9PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang Z, Miao L, Lv C, Sun H, Wei S et al (2013) Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis 4:e657PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fritsch R, de Krijger I, Fritsch K, George R, Reason B et al (2013) RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 153:1050–1063PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sun D, Yu F, Ma Y, Zhao R, Chen X et al (2013) MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem 288:9508–9518PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yanxia Lu
    • 1
  • Hui Yang
    • 1
    • 2
  • Li Yuan
    • 1
  • Guobing Liu
    • 3
  • Chao Zhang
    • 1
    • 4
  • Min Hong
    • 1
  • Yan Liu
    • 1
  • Min Zhou
    • 1
  • Fang Chen
    • 1
  • Xuenong Li
    • 1
    Email author
  1. 1.Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
  2. 2.Department of PathologyXi’an 141 HospitalXi’anChina
  3. 3.Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
  4. 4.Department of PathologySun Yat-Sen University Cancer CenterGuangzhouChina

Personalised recommendations