Skip to main content
Log in

The Sub1 nuclear protein protects DNA from oxidative damage

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Reactive oxygen species are a by-product of aerobic metabolism that can damage lipid, proteins, and nucleic acids. Oxidative damage to DNA is especially critical, because it can lead to cell death or mutagenesis. Previously we reported that the yeast sub1 deletion mutant is sensitive to hydrogen peroxide treatment and that the human SUB1 can complement the sensitivity of the yeast sub1 mutant. In this study, we find that Sub1 protects DNA from oxidative damage in vivo and in vitro. We demonstrate that transcription of SUB1 mRNA is induced by oxidative stress and that the sub1Δ mutant has an increased number of chromosomal DNA strand breaks after peroxide treatment. We further demonstrate that purified Sub1 protein can protect DNA from oxidative damage in vitro, using the metal ion catalyzed oxidation assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haber JE (2002) Uses and abuses of HO endonuclease. Methods Enzymol 350:141–164

    Article  PubMed  CAS  Google Scholar 

  2. Duracková Z (2010) Some current insights into oxidative stress. Physiol Res 59:459–469

    PubMed  Google Scholar 

  3. Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. doi:10.1016/j.cbi.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  4. Yu L, Croze E, Yamaguchi KD et al (2015) Induction of a unique isoform of the NCOA7 oxidation resistance gene by interferon β-1b. J Interferon Cytokine Res 35:186–199. doi:10.1089/jir.2014.0115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Go Y-M, Jones DP (2010) Redox control systems in the nucleus: mechanisms and functions. Antioxid Redox Signal 13:489–509. doi:10.1089/ars.2009.3021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Slupphaug G, Kavli B, Krokan HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    Article  PubMed  CAS  Google Scholar 

  7. Lukosz M, Jakob S, Büchner N et al (2010) Nuclear redox signaling. Antioxid Redox Signal 12:713–742. doi:10.1089/ars.2009.2609

    Article  PubMed  CAS  Google Scholar 

  8. Kretzschmar M, Kaiser K, Lottspeich F, Meisterernst M (1994) A novel mediator of class II gene transcription with homology to viral immediate-early transcriptional regulators. Cell 78:525–534

    Article  PubMed  CAS  Google Scholar 

  9. Kaiser K, Stelzer G, Meisterernst M (1995) The coactivator p15 (PC4) initiates transcriptional activation during TFIIA-TFIID-promoter complex formation. EMBO J 14:3520–3527

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Werten S, Langen FW, van Schaik R et al (1998) High-affinity DNA binding by the C-terminal domain of the transcriptional coactivator PC4 requires simultaneous interaction with two opposing unpaired strands and results in helix destabilization. J Mol Biol 276:367–377. doi:10.1006/jmbi.1997.1534

    Article  PubMed  CAS  Google Scholar 

  11. Wang J-Y, Sarker AH, Cooper PK, Volkert MR (2004) The single-strand DNA binding activity of human PC4 prevents mutagenesis and killing by oxidative DNA damage. Mol Cell Biol 24:6084–6093. doi:10.1128/MCB.24.13.6084-6093.2004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Henry NL, Bushnell DA, Kornberg RD (1996) A yeast transcriptional stimulatory protein similar to human PC4. J Biol Chem 271:21842–21847

    Article  PubMed  CAS  Google Scholar 

  13. Knaus R, Pollock R, Guarente L (1996) Yeast SUB1 is a suppressor of TFIIB mutations and has homology to the human co-activator PC4. EMBO J 15:1933–1940

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Kim IH, Kim K, Rhee SG (1989) Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc Natl Acad Sci USA 86:6018–6022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Salmon TB, Evert BA, Song B, Doetsch PW (2004) Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res 32:3712–3723. doi:10.1093/nar/gkh696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    Article  PubMed  CAS  Google Scholar 

  17. Azevedo F, Marques F, Fokt H et al (2011) Measuring oxidative DNA damage and DNA repair using the yeast comet assay. Yeast 28:55–61. doi:10.1002/yea.1820

    Article  PubMed  CAS  Google Scholar 

  18. Ge H, Martinez E, Chiang CM, Roeder RG (1996) Activator-dependent transcription by mammalian RNA polymerase II: in vitro reconstitution with general transcription factors and cofactors. Methods Enzymol 274:57–71

    Article  PubMed  CAS  Google Scholar 

  19. Park JW, Floyd RA (1994) Generation of strand breaks and formation of 8-hydroxy-2′-deoxyguanosine in DNA by a Thiol/Fe3+/O2-catalyzed oxidation system. Arch Biochem Biophys 312:285–291. doi:10.1006/abbi.1994.1311

    Article  PubMed  CAS  Google Scholar 

  20. Werten S, Stelzer G, Goppelt A et al (1998) Interaction of PC4 with melted DNA inhibits transcription. EMBO J 17:5103–5111. doi:10.1093/emboj/17.17.5103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Mortusewicz O, Roth W, Li N et al (2008) Recruitment of RNA polymerase II cofactor PC4 to DNA damage sites. J Cell Biol 183:769–776. doi:10.1083/jcb.200808097

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Batta K, Yokokawa M, Takeyasu K, Kundu TK (2009) Human transcriptional coactivator PC4 stimulates DNA end joining and activates DSB repair activity. J Mol Biol 385:788–799. doi:10.1016/j.jmb.2008.11.008

    Article  PubMed  CAS  Google Scholar 

  23. Yu L, Volkert MR (2013) Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair. PLoS ONE 8:e58015. doi:10.1371/journal.pone.0058015

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Pan ZQ, Ge H, Amin AA, Hurwitz J (1996) Transcription-positive cofactor 4 forms complexes with HSSB (RPA) on single-stranded DNA and influences HSSB-dependent enzymatic synthesis of simian virus 40 DNA. J Biol Chem 271:22111–22116

    Article  PubMed  CAS  Google Scholar 

  25. Mortusewicz O, Evers B, Helleday T (2015) PC4 promotes genome stability and DNA repair through binding of ssDNA at DNA damage sites. Oncogene. doi:10.1038/onc.2015.135

    PubMed  Google Scholar 

  26. Calhoun LN, Kwon YM (2011) Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. J Appl Microbiol 110:375–386. doi:10.1111/j.1365-2672.2010.04890.x

    Article  PubMed  CAS  Google Scholar 

  27. Zhao G, Ceci P, Ilari A et al (2002) Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277:27689–27696. doi:10.1074/jbc.M202094200

    Article  PubMed  CAS  Google Scholar 

  28. Werten S, Moras D (2006) A global transcription cofactor bound to juxtaposed strands of unwound DNA. Nat Struct Mol Biol 13:181–182. doi:10.1038/nsmb1044

    Article  PubMed  CAS  Google Scholar 

  29. Kannan P, Tainsky MA (1999) Coactivator PC4 mediates AP-2 transcriptional activity and suppresses ras-induced transformation dependent on AP-2 transcriptional interference. Mol Cell Biol 19:899–908

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Baudin A, Ozier-Kalogeropoulos O, Denouel A et al (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Adams A, Gottschling DE, Kaiser CA, Stearns T (1997) Methods in yeast genetics. Cold Spring Harbor Press, New York, p 178

    Google Scholar 

  32. He F, Jacobson A (1995) Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev 9:437–454

    Article  PubMed  CAS  Google Scholar 

  33. Yu L, Volkert MR (2013) UV damage regulates alternative polyadenylation of the RPB2 gene in yeast. Nucleic Acids Res 41:3104–3114. doi:10.1093/nar/gkt020

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Yu L, Volkert MR (2013) UV damage regulates alternative polyadenylation of the RPB2 gene in yeast. Nucleic Acids Res 41:3104–3114. doi:10.1093/nar/gkt020

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Herschleb J, Ananiev G, Schwartz DC (2007) Pulsed-field gel electrophoresis. Nat Protoc 2:677–684. doi:10.1038/nprot.2007.94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael Hampsey, James Haber, and Johannes Hegemann for yeast strains and plasmids, Kenan Murphy and Jen-Yeu Wang for strain construction and Martin Marinus, Anita Fenton, Feng He, Yahui Kong, and Hang Cui for technical advice and assistance. This work was funded in part by NIH grant CA100122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Volkert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Ma, H., Ji, X. et al. The Sub1 nuclear protein protects DNA from oxidative damage. Mol Cell Biochem 412, 165–171 (2016). https://doi.org/10.1007/s11010-015-2621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2621-x

Keywords

Navigation