Skip to main content

Saw1 localizes to repair sites but is not required for recruitment of Rad10 to repair intermediates bearing short non-homologous 3′ flaps during single-strand annealing in S. cerevisiae

Abstract

SAW1 is required for efficient removal by the Rad1–Rad10 nuclease of 3′ non-homologous DNA ends (flaps) formed as intermediates during two modes of double-strand break (DSB) repair in S. cerevisiae, single-strand annealing (SSA) and synthesis-dependent strand annealing. Saw1 was shown in vitro to bind flaps with high affinity, but displayed diminished affinity when flaps were short (<30 deoxynucleotides [nt]), consistent with it not being required for short flap cleavage. Accordingly, this study, using in vivo fluorescence microscopy showed that SAW1 was not required for recruitment of Rad10-YFP to DNA DSBs during their repair by SSA when the flaps were ~10 nt. In contrast, recruitment of Rad10-YFP to DSBs when flaps were ~500 nt did require SAW1 in G1 phase of cell cycle. Interestingly, we observed a substantial increase in colocalization of Saw1-CFP and Rad10-YFP at DSBs when short flaps were formed during repair, especially in G1, indicating significant recruitment of Saw1 despite there being no requirement for Saw1 to recruit Rad10. Saw1-CFP was seldom observed at DSBs without Rad10-YFP. Together, these results support a model in which Saw1 and Rad1–Rad10 are recruited as a complex to short and long flaps in all phases of cell cycle, but that Saw1 is only required for recruitment of Rad1–Rad10 to DSBs when long flaps are formed in G1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2005) DNA repair and mutagenesis, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  2. Mehta A, Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6(9):a016428. doi:10.1101/cshperspect.a016428

    PubMed  Article  Google Scholar 

  3. Symington LS, Rothstein R, Lisby M (2014) Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198(3):795–835. doi:10.1534/genetics.114.166140

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  4. Mieczkowski PA, Lemoine FJ, Petes TD (2006) Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 5(9–10):1010–1020. doi:10.1016/j.dnarep.2006.05.027

    CAS  Article  Google Scholar 

  5. Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66(4):630–670. doi:10.1128/MMBR.66.4.630-670.2002

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  6. Sugawara N, Paques F, Colaiacovo M, Haber JE (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 94(17):9214–9219. doi:10.1073/pnas.94.17.9214

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  7. Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y (1996) Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 13(2):245–247. doi:10.1038/ng0696-245

    PubMed  CAS  Article  Google Scholar 

  8. Strout MP, Marcucci G, Bloomfield CD, Caligiuri MA (1998) The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc Natl Acad Sci USA 95(5):2390–2395. doi:10.1073/pnas.95.5.2390

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  9. Li F, Dong J, Pan X, Oum JH, Boeke JD, Lee SE (2008) Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates. Mol Cell 30(3):325–335. doi:10.1016/j.molcel.2008.02.028

    PubMed  PubMed Central  Article  Google Scholar 

  10. Sarangi P, Altmannova V, Holland C, Bartosova Z, Hao F, Anrather D, Ammerer G, Lee SE, Krejci L, Zhao X (2014) A versatile scaffold contributes to damage survival via sumoylation and nuclease interactions. Cell Rep 9(1):143–152. doi:10.1016/j.celrep.2014.08.054

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  11. Li F, Dong J, Eichmiller R, Holland C, Minca E, Prakash R, Sung P, Yong Shim E, Surtees JA, Eun Lee S (2013) Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast. EMBO J 32(3):461–472. doi:10.1038/emboj.2012.345

    PubMed  PubMed Central  Article  Google Scholar 

  12. Diamante G, Phan C, Celis AS, Krueger J, Kelson EP, Fischhaber PL (2014) Saw1 is required for SDSA double-strand break repair in S. cerevisiae. Biochem Biophys Res Commun 445:602–607. doi:10.1016/j.bbrc.2014.02.048

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  13. Ivanov EL, Haber JE (1995) RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 15(4):2245–2251

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  14. Bastin-Shanower SA, Fricke WM, Mullen JR, Brill SJ (2003) The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol Cell Biol 23(10):3487–3496. doi:10.1128/MCB.23.10.3487-3496.2003

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  15. Davies AA, Friedberg EC, Tomkinson AE, Wood RD, West SC (1995) Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J Biol Chem 270(42):24638–24641. doi:10.1074/jbc.270.42.24638

    PubMed  CAS  Article  Google Scholar 

  16. Paques F, Haber JE (1997) Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17(11):6765–6771

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  17. Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5(6):572–577. doi:10.1038/ncb997

    PubMed  CAS  Article  Google Scholar 

  18. Barlow JH, Lisby M, Rothstein R (2008) Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30(1):73–85

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  19. Moore DM, Karlin J, Gonzalez-Barrera S, Mardiros A, Lisby M, Doughty A, Gilley J, Rothstein R, Friedberg EC, Fischhaber PL (2009) Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae. Nucleic Acids Res 37(19):6429–6438. doi:10.1093/nar/gkp709

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  20. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118(6):699–713. doi:10.1016/j.cell.2004.08.015

    PubMed  CAS  Article  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \varDelta \varDelta C_{\text{T}} }}\) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    PubMed  CAS  Article  Google Scholar 

  22. Taylor JR (1982) An introduction to error analysis, 1st edn. University Science Books, Mill Hill

    Google Scholar 

  23. Karlin J, Fischhaber PL (2013) Rad51 ATP binding but not hydrolysis is required to recruit Rad10 in synthesis-dependent strand annealing in S. cerevisiae. Adv Biol Chem 3:295–303. doi:10.4236/abc.2013.33033

    PubMed  PubMed Central  Article  Google Scholar 

  24. Karathanasis E, Wilson TE (2002) Enhancement of Saccharomyces cerevisiae end-joining efficiency by cell growth stage but not by impairment of recombination. Genetics 161(3):1015–1027

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Mansour WY, Schumacher S, Rosskopf R, Rhein T, Schmidt-Petersen F, Gatzemeier F, Haag F, Borgmann K, Willers H, Dahm-Daphi J (2008) Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 36(12):4088–4098. doi:10.1093/nar/gkn347

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  26. Mozlin AM, Fung CW, Symington LS (2008) Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination. Genetics 178(1):113–126. doi:10.1534/genetics.107.082677

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  27. Bartsch S, Kang LE, Symington LS (2000) RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol Cell Biol 20(4):1194–1205. doi:10.1128/MCB.20.4.1194-1205.2000

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  28. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56(4):619–630. doi:10.1016/0092-8674(89)90584-9

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Adam Bailis and Michael Lisby for critical reading of the manuscript and Jeff Wagner and Matt Labron from UCLA for gamma irradiator access. This work was supported by NIH grants SC3GM093858 (PLF) and S06GM48680 (EPK) and a CSUPERB Presidents’ Commission Scholarship (MM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula L. Fischhaber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Supplementary material 1 (PDF 379 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mardirosian, M., Nalbandyan, L., Miller, A.D. et al. Saw1 localizes to repair sites but is not required for recruitment of Rad10 to repair intermediates bearing short non-homologous 3′ flaps during single-strand annealing in S. cerevisiae . Mol Cell Biochem 412, 131–139 (2016). https://doi.org/10.1007/s11010-015-2616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2616-7

Keywords

  • Saw1
  • Rad10
  • Double-strand break repair
  • Single-strand annealing