Skip to main content
Log in

The Trk family of neurotrophin receptors is downregulated in the lumbar spines of rats with congenital kyphoscoliosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Congenital scoliosis is a condition characterized by spinal curvature beyond the physiological norm. The molecular mechanisms underlying the pathogenesis of congenital scoliosis are beginning to be clarified; however, the genes related to congenital scoliosis are still unknown. We herein report the results of a comprehensive analysis of gene expression in the spines from a rat model of congenital kyphoscoliosis obtained using DNA microarrays. The rats (Ishibashi rats, IS) showed decreased expression levels of genes associated with bone formation, such as those associated with retinol metabolism and type I collagen. Interestingly, the flexion sites of the IS rats showed low expression levels of tropomyosin receptor kinases (Trks: TrkA, TrkB, and TrkC), which belong to the neurotrophic receptor tyrosine kinase family. Moreover, this phenomenon was observed only in the flexion sites of the spine, and the expression levels of Trks in other parts of the spine in these rats were normal. The decreased expression levels of Trks were observed at both the mRNA and protein levels. We also observed that the number of Trk-immunopositive cells in the lumbar spine in the IS rats was lower than that in wild-type rats. These findings indicate that the Trks have an important function in regulating normal bone formation, and provide a molecular explanation for the pathogenesis of congenital kyphoscoliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldstein LA, Waugh TR (1973) Classification and terminology of scoliosis. Clin Orthop Relat Res 93:10–22

    Article  PubMed  Google Scholar 

  2. Stenning M, Nelson I (2013) Recent advances in the treatment of scoliosis in children. J bone Joint Surg (Br) 95:1–4

    Article  Google Scholar 

  3. Ishibashi M (1979) Congenital vertebral malformation (Ishibashi rats). In: Kawamata J, Matsushita H (eds) Handbook on animal models of human diseases. Ishiyaku Shuppan, Tokyo, pp 430–434

    Google Scholar 

  4. Yamada J, Nikaido H, Moritake S, Maekawa R (1982) Genetic analyses of the vertebral anomalies of the IS strain of rat and the development of a BN congenic line with the anomalies. Lab Anim 16:40–47

    Article  PubMed  CAS  Google Scholar 

  5. Seki T, Shimokawa N, Iizuka H, Takagishi K, Koibuchi N (2008) Abnormalities of vertebral formation and Hox expression in congenital kyphoscoliotic rat. Mol Cell Biochem 312:193–199

    Article  PubMed  CAS  Google Scholar 

  6. Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367

    Article  PubMed  CAS  Google Scholar 

  7. Nowak R, Szota J, Mazurek U (2012) Vitamin D receptor gene (VDR) transcripts in bone, cartilage, muscles and blood and microarray analysis of vitamin D responsive genes expression in paravertebral muscles of juvenile and adolescent idiopathic scoliosis patients. BMC Musculoskelet Disord 13:259. doi:10.1186/1471-2474-13-259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Fendri K, Patten SA, Kaufman GN, Zaouter C, Parent S, Grimard G, Edery P, Moldovan F (2013) Microarray expression profiling identifies genes with altered expression in adolescent idiopathic scoliosis. Eur Spine J 22:1300–1311

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nuttall RL, Stack R, Becker JW, Montgomery JR, Vainer M, Johnston R (2001) An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucl Acids Res 29:E41

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Shimokawa N, Yamaguchi M (1992) Characterization of bone protein components with PAGE: effects of zinc and hormones in tissue culture. Mol Cell Biochem 117:153–158

    Article  PubMed  CAS  Google Scholar 

  11. See AW, Kaiser ME, White JC, Clagett-Dame M (2008) A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development. Dev Biol 316:171–190

    Article  PubMed  CAS  Google Scholar 

  12. Li Z, Shen J, Wu WKK, Want X, Liang J, Qiu G, Liu J (2012) Vitamin A deficiency induces congenital deformities in rats. PLoS One 7:e46565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kolodkin AL, Matthes DJ, Goodman CS (1994) The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75:1389–1399

    Article  Google Scholar 

  14. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H (2012) Osteoprotection by semaphorin 3A. Nature 485:69–74

    Article  PubMed  CAS  Google Scholar 

  15. Uren RT, Turnley AM (2014) Regulation of neurotrophin receptor (Trk) signaling: suppressor of cytokines signaling 2 (SOCS2) is a new player. Front Neurosci. doi:10.3389/fnmol.2014.00039

    Google Scholar 

  16. Inagaki N, Thoenen H, Lindholm D (1995) TrkA tyrosine residues involved in NGF-mediated neurite outgrowth of PC12 cells. Eur J Neurosci 7:1125–1133

    Article  PubMed  CAS  Google Scholar 

  17. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  PubMed  CAS  Google Scholar 

  18. Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW (2011) The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178:196–207

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Mantyh WG, Bloom AP, Kuskowski MA, Mantyh PW (2010) Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain. Mol Pain 6:87. doi:10.1186/1744-8069-6-87

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Mantyh WG, Bloom AP, Bouhana KS, Trollinger D, Winkler J, Lee P, Andrews SW, Kuskowski MA, Mantyh PW (2011) Sustained blockade of neurotrophin receptors TrkA, TrkB and TkC reduces non-malignant skeletal pain but not the maintenance of sensory and sympathetic nerve fibers. Bone 48:389–398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Yamashiro T, Fukunaga T, Yamashita K, Kobashi N, Takano-Yamamoto T (2001) Gene and protein expression of brain-derived neurotrophic factor and TrkB in bone and cartilage. Bone 28:404–409

    Article  PubMed  CAS  Google Scholar 

  23. Asumi K, Nakanishi T, Asahara H, Inoue H, Takigawa M (2000) Expression of neurotrophins and their receptor (TRK) during fracture healing. Bone 26:328–333

    Google Scholar 

  24. Wheeler EF, Gong H, Grimes R, Benoit D, Vazquez L (1998) p75NTR and Trk receptors are expressed in reciprocal patterns in a wide variety of non-neural tissues during rat embryonic development, indicating independent receptor functions. J Comp Neurol 39:407–428

    Article  Google Scholar 

  25. Camerino C, Zayzafoon M, Rymaszewski M, Heiny J, Rios M, Hauschka PV (2012) Central depletion of brain-derived neurotrophic factor in mice results in high bone mass and metabolic phenotype. Endocrinology 153:5394–5405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N, Kawaguchi H, Kitagawa M, Takata T, Tsuji K, Kurihara H (2008) Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem 283:16259–16267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Hutchison MR (2013) Mice with a conditional deletion of the neurotrophin receptor TrkB are dwarfed, and are similar to mice with a MAPK14 deletion. PLoS One 8:e66206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kingthley DM (1994) The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146

    Article  Google Scholar 

  29. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  PubMed  CAS  Google Scholar 

  30. Massagué J (1996) TGF-β signaling: receptors, transducers, and mad proteins. Cell 85:947–950

    Article  PubMed  Google Scholar 

  31. Zhang D, Mehler MF, Song Q, Kessier JA (1998) Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. J Neurosci 18:3314–3326

    PubMed  CAS  Google Scholar 

  32. Jin W, Yun C, Kim HS, Kim SJ (2007) TrkC binds the bone morphogenetic protein type II receptor to suppress bone morphogenetic protein signaling. Cancer Res 67:9869–9877

    Article  PubMed  CAS  Google Scholar 

  33. Schaffer AA, Kaplan FS, Tracy MR, O’Brien ML, Dormans JP, Shore EM, Harald RM, Kusumi K (2005) Developmental anomalies of the cervical spine in patients with fibrodysplasia ossifications progressive are indirectly different from those in patients with Klippel-Feil syndrome: clues from the BMP signaling pathway. Spine 30:1379–1385

    Article  PubMed  Google Scholar 

  34. Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Mikami Y, Suzuki S, Ishii Y, Watanabe N, Takahashi T, Isokawa K, Honda MJ (2012) The p75 neurotrophin receptor regulates MC3T3-E1 osteoblastic differentiation. Differentiation 84:392–399

    Article  PubMed  CAS  Google Scholar 

  36. Akiyama Y, Mikami Y, Watanabe E, Watanabe N, Toriumi T, Takahashi T, Komiyama K, Isokawa K, Shimizu N, Honda MJ (2014) The P75 neurotrophin receptor regulates proliferation of the human MG63 osteoblast cell line. Differentiation 87:111–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (25462286) from the JSPS (to H.I.) and the Mishima Kaiun Memorial Foundation, Japan (to N.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Shimokawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Supplementary material 2 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsunoda, D., Iizuka, H., Ichinose, T. et al. The Trk family of neurotrophin receptors is downregulated in the lumbar spines of rats with congenital kyphoscoliosis. Mol Cell Biochem 412, 11–18 (2016). https://doi.org/10.1007/s11010-015-2603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2603-z

Keywords

Navigation