Skip to main content
Log in

Mir-351-5p contributes to the establishment of a pro-inflammatory environment in the H9c2 cell line by repressing PTEN expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The activated renin–angiotensin–aldosterone system modulates several metabolic pathways that contribute to left ventricular hypertrophy and heart failure. In this metabolic system, angiotensin II modulates heart morphophysiological changes triggered by a series of inflammatory and pro-inflammatory responses; however, the fine tuning associated with the control of this biochemical pathway remains unknown. Here, we investigated elements involved in the post-transcriptional regulation of the pro-inflammatory environment in the H9c2 cardiac cell line, focusing on miRNA elements that modulate PTEN expression. A cellular model of investigation was established and the miR-315-5p was identified as a novel element targeting PTEN in this cardiac cell line, thereby controlling the protein level. This interconnected pathway contributes to the control of the pro-inflammatory environment in Ang II-treated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW (2012) Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J Cell Physiol 227:1391–1398

    Article  CAS  PubMed  Google Scholar 

  2. Custodis F, Eberl M, Kilter H, Bohm M, Laufs U (2006) Association of RhoGDIalpha with Rac1 GTPase mediates free radical production during myocardial hypertrophy. Cardiovasc Res 71:342–351

    Article  CAS  PubMed  Google Scholar 

  3. Stuck BJ, Lenski M, Böhm M, Laufs U (2008) Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem 283:32562–32569

    Article  CAS  PubMed  Google Scholar 

  4. Jia L, Li Y, Xiao C, Du J (2012) Angiotensin II induces inflammation leading to cardiac remodeling. Front Biosci (Landmark Ed) 1:221–231

    Article  Google Scholar 

  5. Bouzegrhane F, Thibault G (2003) Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res 53:304–312

    Article  Google Scholar 

  6. Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL (1997) Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 95:1247–1252

    Article  CAS  PubMed  Google Scholar 

  7. Smeets PJH, Teunissen BEJ, Planavila A, Vogel-van den Bosch H, Willemsen PHM (2008) Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARα and PPARδ. J Biol Chem 283:29109–29118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A (2001) Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci USA 98:6668–6673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Haeggstrom JZ, Rinaldo-Matthis A, Wheelock CE, Wetterholm A (2010) Advances in eicosanoid research, novel therapeutic implications. Biochem Biophys Res Commun 396:135–139

    Article  PubMed  Google Scholar 

  10. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    Article  CAS  PubMed  Google Scholar 

  11. St-Germain ME, Gagnon V, Mathieu I, Parent S, Asselin E (2004) Akt regulates COX-2 mRNA and protein expression in mutated-PTEN human endometrial cancer cells. Int J Oncol 24:1311–1324

    CAS  PubMed  Google Scholar 

  12. Lee SH, Lee YP, Kim SY, Jeong MS, Lee MJ, Kang HW, Jeong HJ, Kim DW, Sohn EJ, Jang SH, Kim YH, Kwon HJ, Cho SW, Park J, Eum WS, Choi SY (2008) Inhibition of LPS-induced cyclooxygenase 2 and nitric oxide production by transduced PEP-1-PTEN fusion protein in Raw 264.7 macrophage cells. Exp Mol Med 40(629):638

    Google Scholar 

  13. Li CJ, Chang JK, Wang GJ, Ho ML (2011) Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity. Bone 48:286–297

    Article  CAS  PubMed  Google Scholar 

  14. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  15. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress and timing. Cell 113:673–676

    Article  CAS  PubMed  Google Scholar 

  16. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Olson EN (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 6:239ps3

  18. Bush EW, van Rooij E (2014) miR-25 in heart failure. Circ Res 115:610–612

    Article  CAS  PubMed  Google Scholar 

  19. Condorelli G (2014) MicroRNA-29, a mysterious regulator in myocardial fibrosis and circulating miR-29a as biomarker. J Am Coll Cardiol 64:18–25

    Article  Google Scholar 

  20. Nishiguchi T, Imanishi T, Akasaka T (2015) MicroRNAs and cardiovascular diseases. Biomed Res Int 2015:682857–682871

    Article  PubMed Central  PubMed  Google Scholar 

  21. Smeets PJ, Teunissen BE, Planavila A, de Vogel-van den Bosch H, de Vogel-van den Bosch H, Willemsen PH, van der Vusse GJ, van Bilsen M (2008) Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARalpha and PPARdelta. J Biol Chem 283:29109–29118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Inc, New York

    Google Scholar 

  24. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jin W, Reddy MA, Chen Z, Putta S, Lanting L, Kato M, Park JT, Chandra M, Wang C, Tangirala RK, Natarajan R (2012) Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. J Biol Chem 287:15672–15683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Covey TM, Edes K, Fitzpatrick FA (2007) Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor. Oncogene 26:5784–5792

    Article  CAS  PubMed  Google Scholar 

  28. Ji Y, He Y, Liu L, Zhong X (2010) MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells. FEBS Lett 584:961–967

    Article  CAS  PubMed  Google Scholar 

  29. Vasquez F, Ramaswamy S, Nakamura N, Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20:5010–5018

    Article  Google Scholar 

  30. Torres J, Pulido R (2001) The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 12(276):993–998

    Article  Google Scholar 

  31. Tamguney T, Stokoe D (2007) New insights into PTEN. J Cell Sci 120:4071–4079

    Article  CAS  PubMed  Google Scholar 

  32. Shao J, Sheng H, Inoue H, Morrow JD, DuBois RN (2000) Regulation of constitutive cyclooxygenase-2 expression in colon carcinoma cells. J Biol Chem 275:33951–33956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—2009/07671-2), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (475586/2009-3), and INCT-Nano-Biofarmacêutica

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen C. M. Moraes.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, W., dos Santos, R.A.S. & Moraes, K.C.M. Mir-351-5p contributes to the establishment of a pro-inflammatory environment in the H9c2 cell line by repressing PTEN expression. Mol Cell Biochem 411, 363–371 (2016). https://doi.org/10.1007/s11010-015-2598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2598-5

Keywords

Navigation