Skip to main content

Advertisement

Log in

Dynamic analysis of phospholipid metabolism of mouse macrophages treated with common non-steroidal anti-inflammatory drugs

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Through studying the changes of the total phospholipid components in mouse macrophages under the inflammatory status and the drug intervention status, we found the targets of non-steroidal anti-inflammatory drugs on phospholipids, thus providing the basis for the targets of in vitro anti-inflammatory effects of non-steroidal anti-inflammatory drugs. After RAW264.7 cells were pretreated with common non-steroidal anti-inflammatory drugs (aspirin and ibuprofen) and, respectively, stimulated with KLA for various periods (0.5, 4, 12, 16, and 24 h), the phospholipids were extracted. The dynamic changes of phospholipids in cells under various stimulations were analyzed with UPLC-Q-TOF–MS technique. Through the statistical analysis of Simca-P, we explored the potential targets of non-steroidal anti-inflammatory drugs on phospholipids. Through the dynamic analysis of phospholipids, we found two biomarkers (PC(17:1/18:1), PA(18:0/18:4)) which might be in vitro intervention inflammatory response targets of non-steroidal anti-inflammatory drugs. The analysis results show that in anti-inflammatory effects, non-steroidal anti-inflammatory drugs can inhibit COX, induce the cellular fatty acid desaturation and the changes of phospholipid components, stimulate free fatty acids, activate calcium ion channels of endoplasmic reticulum, and promote cell endocytosis, thus controlling inflammation and activating cells. Non-steroidal anti-inflammatory drugs can promote endocytosis, alter cell inflammatory response, and activate the process cells, thus realizing the anti-inflammatory effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Legrand-Poels S et al (2014) Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol 92(1):131–141

    Article  CAS  PubMed  Google Scholar 

  2. Sethu S, Alirio J (2011) Melendez, new developments on the TNFα-mediated signalling pathways. Biosci Rep 31(1):63–76

    Article  CAS  PubMed  Google Scholar 

  3. Mojgan M, Kuda O (2015) Lipid signaling in adipose tissue: connecting inflammation & metabolism. Biochimica et Biophysica Acta (BBA) 1851(4):503–518

    Article  Google Scholar 

  4. Poveda JA et al (2014) Lipid modulation of ion channels through specific binding sites. Biochimica et Biophysica Acta (BBA) 1838(6):1560–1567

    Article  CAS  Google Scholar 

  5. Bates RC et al (2014) Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Dev Biol 386(1):165–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cho HY, Choi EK, Lee SW (2009) Programmed death-1 receptor negatively regulates LPS-mediated IL-12 production and differentiation of murine macrophage RAW264.7 cells. Immunol Lett 127(1):39–47

    Article  CAS  PubMed  Google Scholar 

  7. Dennis EA et al (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111(10):6130–6185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bakovic M, HB Dunford (1994) Intimate relation between cyclooxygenase and peroxidase acivities of prostaglandin H synthase. peroxidase reaction of ferulic acid and its influence on the reaction of arachidonic acid. Biochemistry 33:6475–6482

    Article  CAS  PubMed  Google Scholar 

  9. Cao Y et al (2000) Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci 97(21):11280–11285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Maurya MR, Gupta S, Li X (2013) Analysis of inflammatory and lipid metabolic networks across RAW264.7 and thioglycolate-elicited macrophages. J Lipid Res 54(9):2525–2542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nakanishi-Matsui M et al (2012) Lipopolysaccharide induces multinuclear cell from RAW264.7 line with increased phagocytosis activity. Biochem Biophys Res Commun 425(2):144–149

    Article  CAS  PubMed  Google Scholar 

  12. Xia Wu, Zhao Lili, Peng Haibo (2015) Search for potential biomarkers by UPLC/Q-TOF–MS analysis of dynamic changes of glycerophospholipid constituents of RAW264.7 cells treated with NSAID. Chromatographia 78(3):211–220

    Google Scholar 

  13. Schwentker A, Vodovotz Y, Weller R (2002) Nitric oxide and wound repair: role of cytokines? Nitric Oxide 7:1–10

    Article  CAS  PubMed  Google Scholar 

  14. Yue R et al (2013) Rapid-resolution liquid chromatography TOF–MS for urine metabolomic analysis of collagen-induced arthritis in rats and its applications. J Ethnopharmacol 145(2):465–475

    Article  CAS  PubMed  Google Scholar 

  15. Rajalahti T et al (2009) Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemom Intell Lab Syst 95(1):35–48

    Article  CAS  Google Scholar 

  16. Lin W-S, Yang C-M, Kuo B-J (2012) Classifying cultivars of rice (Oryza sativa L.) based on corrected canopy reflectance spectra data using the orthogonal projections to latent structures (O-PLS) method. Chemom Intell Lab Syst 115:25–36

    Article  CAS  Google Scholar 

  17. Harvey KA et al (2010) Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J Lipid Res 51(12):3470–3480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Walloschke B, Fuhrmann H, Schumann J (2010) Enrichment of RAW264.7 macrophages with essential 18-carbon fatty acids affects both respiratory burst and production of immune modulating cytokines. J Nutr Biochem 21(6):556–560

    Article  CAS  PubMed  Google Scholar 

  19. Rouzer CA, Rouzer PTI (2007) Lipid profiling reveals glycerophospholipid remodeling in zymosan-stimulated macrophages. Biochemistry 46:6026–6042

    Article  CAS  PubMed  Google Scholar 

  20. Glatz JF, Luiken JJ (2015) Fatty acids in cell signaling: historical perspective and future outlook. Prostaglandins Leuk Essent Fatty Acids 92:57–62

    Article  CAS  Google Scholar 

  21. Gómez-Fernández JC, Corbalán-García S (2007) Diacylglycerols, multivalent membrane modulators. Chem Phys Lipids 148(1):1–25

    Article  PubMed  Google Scholar 

  22. Gustavsson M, Traaseth NJ, Veglia G (2011) Activating and deactivating roles of lipid bilayers on the Ca2+-ATPase/phospholamban complex. Biochemistry 50(47):10367–10374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Pereira-Leite C, Nunes C, Reis S (2013) Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Prog Lipid Res 52(4):571–584

    Article  CAS  PubMed  Google Scholar 

  24. Lee YN et al (2004) Phosphatidic acid positively regulates LPS-induced differentiation of RAW264.7 murine macrophage cell line into dendritic-like cells. Biochem Biophys Res Commun 318(4):839–845

    Article  CAS  PubMed  Google Scholar 

  25. Lee JG et al (2007) Phosphatidic acid as a regulator of matrix metalloproteinase-9 expression via the TNF-α signaling pathway. FEBS Lett 581(4):787–793

    Article  CAS  PubMed  Google Scholar 

  26. Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Ann Rev Physiol 72(1):219–246

    Article  CAS  Google Scholar 

  27. Vihervaara T et al (2013) Modification of the lipidome in RAW264.7 macrophage subjected to stable silencing of oxysterol-binding proteins. Biochimie 95(3):538–547

    Article  CAS  PubMed  Google Scholar 

  28. Berchtold MW, Villalobo A (2014) The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochimica et Biophysica Acta (BBA 1843(2):398–435

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Project of Guangdong Provincial National Science Foundation (Grant No. 1035102201000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Wu, X., Zhao, L. et al. Dynamic analysis of phospholipid metabolism of mouse macrophages treated with common non-steroidal anti-inflammatory drugs. Mol Cell Biochem 411, 161–171 (2016). https://doi.org/10.1007/s11010-015-2578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2578-9

Keywords

Navigation