Skip to main content
Log in

Resveratrol prevents renal lipotoxicity in high-fat diet-treated mouse model through regulating PPAR-α pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Resveratrol (RSV) has beneficial effects on renal diseases, but its underlying mechanisms are still unclear. In the present study, we investigate the renoprotective effects of RSV on obesity-related renal diseases and clarify the potential mechanisms. Male C57BL/6J mice were fed with high-fat diet (HFD) with or without 400 mg/kg RSV treatment for 12 weeks. Feeding HFD induced renal injuries, but treating them with RSV significantly decreased glomerular volume (p < 0.05), glycogen (p < 0.01) and collagen (p < 0.05) in renal tissues. Although slightly changed body weight and fasting blood glucose, RSV attenuated renal dysfunction, including decreased levels of blood urea nitrogen (p < 0.05), urea protein (p < 0.01), and microalbuminuria (p < 0.01). Furthermore, RSV treatment markedly reduced gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and inducible nitric oxide synthase (iNOS) (all p < 0.05), 4-Hydroxynonenal expression (p < 0.01), and lipid accumulation. Mechanistically, RSV enhanced the expression of lipolytic genes, peroxisome proliferator-activated receptor (PPAR)-α (p < 0.001), carnitine palmitoyltransferase (CPT)-1 (p < 0.05), and medium-chain acyl-coenzyme A dehydrogenase (MCAD) (p < 0.01), but had no effect on lipogenic genes, PPAR-γ and sterol regulatory element-binding protein (SREBP)-1c. RSV also obviously increased renal PPAR-α protein expression (p < 0.001) and the phosphorylation of AMPK level. Collectively, these results support the therapeutic effects of RSV on high-fat diet-induced renal damages at least partially through targeting on PPAR-α signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu ZH (2013) Nephrology in china. Nat Rev Nephrol 9:523–528. doi:10.1038/nrneph.2013.146

    Article  PubMed  Google Scholar 

  2. Ortiz A, Covic A, Fliser D, Fouque D, Goldsmith D, Kanbay M, Mallamaci F, Massy ZA, Rossignol P, Vanholder R, Wiecek A, Zoccali C (2014) London GM and Board of the E-mWGoERAE, Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 383:1831–1843. doi:10.1016/S0140-6736(14)60384-6

    Article  PubMed  Google Scholar 

  3. de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, D’Agati VD, Lamb HJ, Pongrac Barlovic D, Hojs R, Abbate M, Rodriquez R, Mogensen CE, Porrini E, Diabesity E-EWG (2014) Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol 2:417–426. doi:10.1016/S2213-8587(14)70065-8

    Article  PubMed  Google Scholar 

  4. Martinez-Rubio L, Morais S, Evensen O, Wadsworth S, Vecino JG, Ruohonen K, Bell JG, Tocher DR (2013) Effect of functional feeds on fatty acid and eicosanoid metabolism in liver and head kidney of Atlantic salmon (Salmo salar L.) with experimentally induced heart and skeletal muscle inflammation. Fish Shellfish Immunol 34:1533–1545. doi:10.1016/j.fsi.2013.03.363

    Article  CAS  PubMed  Google Scholar 

  5. Otten W, Wirth C, Iaizzo PA, Eichinger HM (1993) A high omega 3 fatty acid diet alters fatty acid composition of heart, liver, kidney, adipose tissue and skeletal muscle in swine. Ann Nutr Metab 37:134–141

    Article  CAS  PubMed  Google Scholar 

  6. Bell AW (1979) Lipid metabolism in liver and selected tissues and in the whole body of ruminant animals. Prog Lipid Res 18:117–164

    Article  CAS  PubMed  Google Scholar 

  7. Chanarin I, Patel A, Slavin G, Wills EJ, Andrews TM, Stewart G (1975) Neutral-lipid storage disease: a new disorder of lipid metabolism. Br Med J 1:553–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tanaka Y, Kume S, Araki S, Isshiki K, Chin-Kanasaki M, Sakaguchi M, Sugimoto T, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T (2011) Fenofibrate, a PPARalpha agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int 79:871–882. doi:10.1038/ki.2010.530

    Article  CAS  PubMed  Google Scholar 

  9. Kim HJ, Sato T, Rodriguez-Iturbe B, Vaziri ND (2011) Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J Pharmacol Exp Ther 337:583–590. doi:10.1124/jpet.110.175828

    Article  CAS  PubMed  Google Scholar 

  10. Tonolo G, Cherchi S (2014) Tubulointerstitial disease in diabetic nephropathy. Int J Nephrol Renovasc Dis 7:107–115. doi:10.2147/IJNRD.S37883

    Article  PubMed Central  PubMed  Google Scholar 

  11. Weinberg JM (2006) Lipotoxicity. Kidney Int 70:1560–1566. doi:10.1038/sj.ki.5001834

    Article  CAS  PubMed  Google Scholar 

  12. Park CW, Zhang Y, Zhang X, Wu J, Chen L, Cha DR, Su D, Hwang MT, Fan X, Davis L, Striker G, Zheng F, Breyer M, Guan Y (2006) PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int 69:1511–1517. doi:10.1038/sj.ki.5000209

    Article  CAS  PubMed  Google Scholar 

  13. Feng YH, Zou JP, Li XY (2002) Effects of resveratrol and ethanol on production of pro-inflammatory factors from endotoxin activated murine macrophages. Acta Pharmacol Sin 23:1002–1006

    CAS  PubMed  Google Scholar 

  14. Hamza SM, Dyck JR (2014) Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol. Front Physiol 5:292. doi:10.3389/fphys.2014.00292

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zhang LP, Yin JX, Liu Z, Zhang Y, Wang QS, Zhao J (2006) Effect of resveratrol on L-type calcium current in rat ventricular myocytes. Acta Pharmacol Sin 27:179–183. doi:10.1111/j.1745-7254.2006.00250.x

    Article  PubMed  Google Scholar 

  16. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433. doi:10.1016/j.cell.2012.01.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690. doi:10.1016/j.cmet.2012.04.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Higashida K, Kim SH, Jung SR, Asaka M, Holloszy JO, Han DH (2013) Effects of resveratrol and SIRT1 on PGC-1alpha activity and mitochondrial biogenesis: a reevaluation. PLoS Biol 11:e1001603. doi:10.1371/journal.pbio.1001603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Xia N, Strand S, Schlufter F, Siuda D, Reifenberg G, Kleinert H, Forstermann U, Li H (2013) Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide 32:29–35. doi:10.1016/j.niox.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  20. Wen D, Huang X, Zhang M, Zhang L, Chen J, Gu Y, Hao CM (2013) Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS One 8:e82336. doi:10.1371/journal.pone.0082336

    Article  PubMed Central  PubMed  Google Scholar 

  21. Xu F, Wang Y, Cui W, Yuan H, Sun J, Wu M, Guo Q, Kong L, Wu H, Miao L (2014) Resveratrol Prevention of Diabetic Nephropathy Is Associated with the Suppression of Renal Inflammation and Mesangial Cell Proliferation: possible Roles of Akt/NF-kappaB Pathway. Int J Endocrinol 2014:289327. doi:10.1155/2014/289327

    PubMed Central  PubMed  Google Scholar 

  22. Gordish KL, Beierwaltes WH (2014) Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. Am J Physiol Renal Physiol 306:F542–F550. doi:10.1152/ajprenal.00437.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59:554–563. doi:10.2337/db09-0482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Pan Y, Wang Y, Cai L, Cai Y, Hu J, Yu C, Li J, Feng Z, Yang S, Li X, Liang G (2012) Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol 166:1169–1182. doi:10.1111/j.1476-5381.2012.01854.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pan Y, Zhu G, Wang Y, Cai L, Cai Y, Hu J, Li Y, Yan Y, Wang Z, Li X, Wei T, Liang G (2013) Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart. J Nutr Biochem 24:146–155. doi:10.1016/j.jnutbio.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  26. Zarkovic N (2003) 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Mol Aspects Med 24:281–291

    Article  CAS  PubMed  Google Scholar 

  27. Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A (2013) Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc 8:1149–1154. doi:10.1038/nprot.2013.055

    Article  PubMed  Google Scholar 

  28. Kim J, Ahn JH, Kim JH, Yu YS, Kim HS, Ha J, Shinn SH, Oh YS (2007) Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Exp Eye Res 84:886–893. doi:10.1016/j.exer.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  29. Wu XP, Xiong M, Xu CS, Duan LN, Dong YQ, Luo Y, Niu TH, Lu CR (2015) Resveratrol induces apoptosis of human chronic myelogenous leukemia cells in vitro through p38 and JNK-regulated H2AX phosphorylation. Acta Pharmacol Sin 36:353–361. doi:10.1038/aps.2014.132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ (2010) Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol 177:1065–1071. doi:10.2353/ajpath.2010.090923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812:719–731. doi:10.1016/j.bbadis.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  32. Fan H, Yang HC, You L, Wang YY, He WJ, Hao CM (2013) The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int 83:404–413. doi:10.1038/ki.2012.394

    Article  CAS  PubMed  Google Scholar 

  33. Jia Y, Kim S, Kim J, Kim B, Wu C, Lee JH, Jun HJ, Kim N, Lee D, Lee SJ (2015) Ursolic acid improves lipid and glucose metabolism in high-fat-fed C57BL/6J mice by activating peroxisome proliferator-activated receptor alpha and hepatic autophagy. Mol Nutr Food Res 59:344–354. doi:10.1002/mnfr.201400399

    Article  CAS  PubMed  Google Scholar 

  34. Grygiel-Gorniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications–a review. Nutr J 13:17. doi:10.1186/1475-2891-13-17

    Article  PubMed Central  PubMed  Google Scholar 

  35. Calleri E, Pochetti G, Dossou KS, Laghezza A, Montanari R, Capelli D, Prada E, Loiodice F, Massolini G, Bernier M, Moaddel R (2014) Resveratrol and its metabolites bind to PPARs. ChemBioChem 15:1154–1160. doi:10.1002/cbic.201300754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Inoue H, Jiang XF, Katayama T, Osada S, Umesono K, Namura S (2003) Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice. Neurosci Lett 352:203–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Shan Lu for technical support in the animal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongji Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Lin, S., Zhang, L. et al. Resveratrol prevents renal lipotoxicity in high-fat diet-treated mouse model through regulating PPAR-α pathway. Mol Cell Biochem 411, 143–150 (2016). https://doi.org/10.1007/s11010-015-2576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2576-y

Keywords

Navigation