Advertisement

Molecular and Cellular Biochemistry

, Volume 410, Issue 1–2, pp 131–142 | Cite as

The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production

  • Monika LitwinEmail author
  • Agata Radwańska
  • Maria Paprocka
  • Claudine Kieda
  • Tadeusz Dobosz
  • Wojciech Witkiewicz
  • Dagmara Baczyńska
Article

Abstract

In recent years, special attention has been paid to finding new pro-angiogenic factors which could be used in gene therapy of vascular diseases such as critical limb ischaemia (CLI). Angiogenesis, the formation of new blood vessels, is a complex process dependent on different cytokines, matrix proteins, growth factors and other pro- or anti-angiogenic stimuli. Numerous lines of evidence suggest that key mediators of angiogenesis, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) together with fibroblast growth factor2 (FGF2) are involved in regulation of the normal and pathological process of angiogenesis. However, less information is available on the complex interactions between these and other angiogenic factors. The aim of this study was to characterise the effect of fibroblast growth factor2 on biological properties of human endothelial progenitor cells with respect to the expression level of other regulatory cytokines. Ectopic expression of FGF2 in EP cells stimulates their pro-angiogenic behaviour, leading to increased proliferation, migration and tube formation abilities. Moreover, we show that the expression profile of VEGF and other pro-angiogenic cytokines, such as HGF, MCP2, and interleukins, is affected differently by FGF2 in EPC. In conclusion, we provide evidence that FGF2 directly affects not only the biological properties of EP cells but also the expression pattern and secretion of numerous chemocytokines. Our results suggest that FGF2 could be applied in therapeutic approaches for CLI and other ischaemic diseases of the vascular system in vivo.

Keywords

Endothelial progenitor cells Basic fibroblast growth factor Angiogenesis Cytokines Vascular endothelial growth factor 

Abbreviations

CLI

Critical limb ischaemia

EPCs

Endothelial progenitor cells

FGF2

Basic fibroblast growth factor

FGFR

Fibroblast growth factor receptor

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

HGF

Hepatocyte growth factor

HGFR

Hepatocyte growth factor receptor

MCP2

Monocyte chemoattractant protein-2

PBS

Phosphate buffered saline

RT-PCR

Real-time polymerase chain reaction

VEGF

Vascular endothelial growth factor

VEGFR

Vascular growth factor receptor

Notes

Funding

This publication is part of the WroVasc Project–Integrated Cardiovascular Centre, co-financed by the European Regional Development Fund within the Innovative Economy Operational Programme 2007-2013 and realised at the Regional Specialist Hospital, Research and Development Centre in Wroclaw. ‘European Funds—for the development of innovative economy.’

Author Contributions

ML. and A.R. designed the research, performed the experiments, analysed the data and wrote the manuscript; D.B. conceived the experiments; M.P. and C.K. provided the endothelial cell model; D.B., T.D. and W.W. revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from individual participant included in the study.

Supplementary material

11010_2015_2545_MOESM1_ESM.xlsx (13 kb)
Supplementary material 1 (XLSX 12 kb)

References

  1. 1.
    Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887CrossRefPubMedGoogle Scholar
  2. 2.
    Camerliet P, Jain RK (2011) Molecular mechanism and clinical application of angiogenesis. Nature 473:298–307CrossRefGoogle Scholar
  3. 3.
    Otrock ZK, Mahfouz R, Makarem J, Shamseddine A (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanism. Blood Cells Mol Dis 39:212–220CrossRefPubMedGoogle Scholar
  4. 4.
    Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6:607–614CrossRefPubMedGoogle Scholar
  6. 6.
    Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16:107–137CrossRefPubMedGoogle Scholar
  7. 7.
    Florkiewicz RZ, Baird A, Gonzalez AM (1991) Multiple forms of bFGF: differential nuclear and cell surface localization. Growth Factors 4:265–275CrossRefPubMedGoogle Scholar
  8. 8.
    Lieu C, Heymach J, Overman M, Tran H, Kopetz C (2011) Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 17:6130–6139CrossRefPubMedGoogle Scholar
  9. 9.
    Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 1:4368–4380CrossRefGoogle Scholar
  10. 10.
    Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 25:11947–11954Google Scholar
  11. 11.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefPubMedGoogle Scholar
  12. 12.
    Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831CrossRefPubMedGoogle Scholar
  13. 13.
    Seghezzi G, Patel S, Ren JC, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor2 (FGF2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:569–580CrossRefGoogle Scholar
  15. 15.
    Carmeliet P, Luttun A (2001) The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 86:289–297PubMedGoogle Scholar
  16. 16.
    Tongers J, Roncalli JG, Losordo DW (2010) Role of endothelial progenitor cell during ischemia-induced vasculogenesis and collateral formation. Microvasc Res 79:200–206PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Minami T, Aird WC (2005) Endothelial cell gene regulation. Trends Cardiovasc Med 15:174–184CrossRefPubMedGoogle Scholar
  18. 18.
    Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, Kieda C (2011) CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A 79:594–602CrossRefPubMedGoogle Scholar
  19. 19.
    Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438CrossRefPubMedGoogle Scholar
  20. 20.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45CrossRefGoogle Scholar
  21. 21.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRefPubMedGoogle Scholar
  22. 22.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1999) New colorimetric cytotoxicity assay for anticancer-drug screening. J Nat Cancer Inst 4:1107–1112Google Scholar
  24. 24.
    Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. PNAS 97:3422–3427PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Tongers J, Roncalli JG, Losordo DW (2008) Therapeutic angiogenesis for critical limb ischemia. Microvascular therapies coming of age. Circulation 118:9–16CrossRefPubMedGoogle Scholar
  26. 26.
    Madonna R, Rokosh G (2012) Insight into gene therapy for critical limb ischemia: the devil is in the details. Vasc Pharmacol 57:10–14CrossRefGoogle Scholar
  27. 27.
    Powell RJ (2012) Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J Vasc Surg 56:264–266CrossRefPubMedGoogle Scholar
  28. 28.
    Aviles RJ, Annex BH, Lederman RJ (2003) Testing clinical therapeutic angiogenesis using basic fibroblast growth factor (FGF-2). Br J Pharmacol 140:637–647PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    De Haro J, Acin F, Lopez-Quintana A, Florez A, Martinez-Aguilar E, Varela C (2009) Meta-analysis of randomized, controlled clinical trials in angiogenesis: gene and cell therapy in peripheral arterial disease. Heart Vessels 24:321–328CrossRefPubMedGoogle Scholar
  30. 30.
    Yonemitsu Y, Matsumoto T, Itoh H, Okazaki J, Uchiyama M, Yoshida K, Onimaru M, Onohara T, Inoguchi H, Kyuragi R, Shimokawa M, Ban H, Tanaka M, Inoue M, Shu T, Hasegawa M, Nakanishi Y, Maehara Y (2013) DVC1-0101 to treat peripheral arterial disease: a Phase I/IIa open-label dose-escalation clinical trial. Mol Ther 21(3):707–714PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Nikol S, Baumgartner I, Van Belle E, Diehm C, Visoná A, Capogrossi MC, Ferreira-Maldent N, Gallino A, Wyatt MG, Wijesinghe LD, Fusari M, Stephan D, Emmerich J, Pompilio G, Vermassen F, Pham E, Grek V, Coleman M, Meyer F (2008) Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 16:972–978CrossRefPubMedGoogle Scholar
  32. 32.
    Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB, Hillegass WB, Rocha-Singh K, Moon TE, Whitehouse MJ, Annex BH (2002) TRAFFIC Investigators. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359:2053–2058CrossRefPubMedGoogle Scholar
  33. 33.
    Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Belle E (2011) TAMARIS Committees and Investigators. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 377:1929–1937CrossRefPubMedGoogle Scholar
  34. 34.
    Goto F, Goto K, Weindel K, Folkman J (1993) Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Investig 69:508–517PubMedGoogle Scholar
  35. 35.
    Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM (1995) Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92:365–371CrossRefGoogle Scholar
  36. 36.
    Young PP, Vaugham DE, Hatzopoulos AK (2007) Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog Cardiovasc Dis 49(6):421–429PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Dell’Era P, Coco L, Ronca R, Sennino B, Presta M (2002) Gene expression profile in fibroblast growth factor 2-transformed endothelial cells. Oncogene 21:2433–2440CrossRefPubMedGoogle Scholar
  38. 38.
    Saadeh PB, Mehrara BJ, Steinbrech DS, Spector JA, Greenwald JA, Chin GS, Ueno H, Gittes GK, Longaker MT (2000) Mechanisms of fibroblasts growth factor-2 modulation of vascular endothelial growth factor expression by osteoblastic cells. Endocrionology 141:2075–2083CrossRefGoogle Scholar
  39. 39.
    Joy A, Moffett J, Neary K, Mordechai E, Stachowiak EK, Coons S, Rankin-Shapiro J, Florkiewicz RZ, Stachowiak MK (1997) Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 14:171–183CrossRefPubMedGoogle Scholar
  40. 40.
    Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRβ signaling. J Cell Sci 118:3759–3768CrossRefPubMedGoogle Scholar
  41. 41.
    Cao R, Ji H, Feng N, Zhang Y, Yang X, Andersson P, Sun Y, Tritsaris K, Hansen AJ, Dissing S, Cao Y (2012) Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA 25:15894–15899CrossRefGoogle Scholar
  42. 42.
    Presta M, Andres G, Leali D, Deel’Era P, Ronca R (2009) Inflammatory cells and chemokines sustain FGF-2 induced angiogenesis. Eur Cytokine Netw 20:39–47PubMedGoogle Scholar
  43. 43.
    Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 10:27348–27357CrossRefGoogle Scholar
  44. 44.
    Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376CrossRefPubMedGoogle Scholar
  45. 45.
    Choi I, Lee YS, Chung HK, Choi D, Ecoiffier T, Lee HN, Kim KE, Lee S, Park EK, Maeng YS, Kim NY, Ladner RD, Petasis NA, Koh CJ, Chen L, Lenz HJ, Hong YK (2013) Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration. Angiogenesis 16:29–44PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kaga T, Kawano H, Sakaguchi M, Nakazawa T, Taniyama Y, Morishita R (2012) Hepatocyte growth factor stimulated angiogenesis without inflammation: differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor. Vasc Pharmacol 57:3–9CrossRefGoogle Scholar
  47. 47.
    Salcedo R, Young HA, Ponce ML, Ward JM, Kleinman HK, Murphy WJ, Oppenheim JJ (2001) Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166:7571–7578CrossRefPubMedGoogle Scholar
  48. 48.
    Cheng SS, Lukacs NW, Kunkel SL (2002) Eotaxin/CCL11 suppresses IL-8/CXCL8 secretion from human dermal microvascular endothelial cells. J Immunol 168:2887–2894CrossRefPubMedGoogle Scholar
  49. 49.
    Chen J, Akyurek LM, Fellstrom B, Hayry P, Paul LC (1998) Eotaxin and capping protein in experimental vasculopathy. Am J Pathol 153:81PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Onimaru M, Yonemitsu Y, Tanii M, Nakagawa K, Masaki I, Okano S, Ishibashi H, Shirasuna K, Hasegawa M, Sueishi K (2002) Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 91:923–930CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Monika Litwin
    • 1
    Email author
  • Agata Radwańska
    • 1
    • 5
  • Maria Paprocka
    • 1
    • 2
  • Claudine Kieda
    • 3
  • Tadeusz Dobosz
    • 1
    • 4
  • Wojciech Witkiewicz
    • 1
  • Dagmara Baczyńska
    • 1
    • 4
  1. 1.WroVasc — Integrated Cardiovascular Centre, Regional Specialist Hospital, Research and Development CentreWrocławPoland
  2. 2.Ludwik Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWrocławPoland
  3. 3.Centre de Biophysique Moléculaire, CNRSOrléans Cedex 2France
  4. 4.Laboratory of Molecular Technique, Institute of Forensic MedicineMedical University of WrocławWrocławPoland
  5. 5.Institut de Biologie Valrose, CNRS UMR 7277, Faculte des SciencesUniversite Nice-Sophia Antipolis, ParcValroseNice cedexFrance

Personalised recommendations