Skip to main content

Advertisement

Log in

A novel adipokine C1q/TNF-related protein 3 is expressed in developing skeletal muscle and controls myoblast proliferation and differentiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Several hormones and growth factors, including adipokines, play important roles during muscle development and regeneration. CTRP3, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor-related protein (CTRP) superfamily. CTRP3 is a novel adipokine previously reported to reduce glucose output in hepatocytes and lower glucose levels in mice models. In the present study, we provide the first evidence for a physiological role of the CTRP3 in myogenesis using C2C12 myoblasts. CTRP3 was expressed in developing skeletal muscle tissues, and the expression level of CTRP3 was increased during myogenic differentiation of C2C12 cells. Recombinant CTRP3 (rCTRP3) promoted the proliferation of undifferentiated C2C12 myoblasts and this response required activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. In contrary, rCTRP3 inhibited myogenic differentiation and fusion of C2C12 cells by suppressing the expression of myogenic marker genes (myogenin and myosin heavy chain). CTRP3 mRNA expression was increased in C2C12 myoblasts treated with transforming growth factor-β3 (TGF-β3), suggesting that TGF-β3 is one of the extracellular factors regulating CTRP3 expression during myogenesis. These results indicate a novel physiological role for CTRP3 during skeletal myogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schaffler A, Buechler C (2012) CTRP family: linking immunity to metabolism. Trends Endocrinol Metab 23:194–204

    Article  PubMed  Google Scholar 

  2. Kishore U, Gaboriaud C, Waters P, Shrive AK, Greenhough TJ, Reid KBM, Sim RB, Arlaud GJ (2004) C1q and tumor necrosis factor superfamily: modularity and versatility. Trends Immunol 25:551–561

    Article  CAS  PubMed  Google Scholar 

  3. Wong GW, Wang J, Hug C, Tsao TS, Lodish HF (2004) A family of Acrp30/adiponectin structural and functional paralogs. Proc Natl Acad Sci USA 101:10302–10307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, Revett T, Gimeno R, Lodish HF (2008) Molecular, biochemical and functional characterization of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions. Biochem J 416:161–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, Ge G, Spooner E, Hug C, Gimeno R, Lodish HF (2009) Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterodimers with adiponectin. FASEB J 23:241–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Peterson JM, Wei Z, Wong GW (2010) C1q/TNF-related protein-3 (CTRP3), a novel adipokine that regulates hepatic glucose output. J Biol Chem 285:39691–39701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Enomoto H, Ohashi K, Shibata R, Higuchi A, Maruyama S, Izumiya Y, Walsh K, Murohara T, Ouchi N (2011) Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. J Biol Chem 286:34552–34558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wei Z, Peterson JM, Wong GW (2011) Metabolic regulation by C1q/TNF-related protein-13 (CTRP13): activation of AMP-activated protein kinase and suppression of fatty acid-induced JNK signaling. J Biol Chem 286:15652–15665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Peterson JM, Aja S, Wei Z, Wong GW (2012) CTRP1 protein enhances fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inhibition. J Biol Chem 287:1576–1587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wei Z, Peterson JM, Lei X, Cebotaru L, Wolfgang MJ, Christian Baldeviano G, Wong GW (2012) C1q/TNF-related protein-12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes. J Biol Chem 287:10301–10315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Maeda T, Abe M, Kurisu K, Jikko A, Furukawa S (2001) Molecular cloning and characterization of a novel gene, CORS26, encoding a putative secretory protein and its possible involvement in skeletal development. J Biol Chem 276:3628–3634

    Article  CAS  PubMed  Google Scholar 

  12. Maeda T, Jikko A, Abe M, Yokohama-Tamaki T, Akiyama H, Furukawa S, Takigawa M, Wakisaka S (2006) Cartducin, a paralog of Acrp30/adiponectin, is induced during chondrogenic differentiation and promotes proliferation of chondrogenic precursors and chondrocytes. J Cell Physiol 206:537–544

    Article  CAS  PubMed  Google Scholar 

  13. Yokohama-Tamaki T, Maeda T, Tanaka TS, Shibata S (2011) Functional analysis of CTRP3/cartducin in Meckel’s cartilage and developing condylar cartilage in the fetal mouse mandible. J Anat 218:517–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  15. Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23:779–796

    CAS  PubMed  Google Scholar 

  16. Yu T, Luo G, Zhang L, Wu J, Zhang H, Yang G (2008) Leptin promotes proliferation and inhibits differentiation in porcine skeletal myoblasts. Biosci Biotechnol Biochem 72:13–21

    Article  CAS  PubMed  Google Scholar 

  17. Fiaschi T, Girelli D, Comito G, Gelmini S, Ramponi G, Serio M, Chiarugi P (2009) Globular adiponectin induces differentiation and fusion of skeletal muscle cells. Cell Res 19:584–597

    Article  CAS  PubMed  Google Scholar 

  18. Yang H, Li F, Kong X, Yuan X, Wang W, Huang R, Li T, Geng M, Wu G, Yin Y (2012) Chemerin regulates proliferation and differentiation of myoblasts cells via ERK1/2 and mTOR signaling pathways. Cytokine 60:646–652

    Article  CAS  PubMed  Google Scholar 

  19. Pijet M, Pijet B, Litwiniuk A, Pajak B, Gajkowska B, Orzechowski A (2013) Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways. Cytokine 61:445–454

    Article  CAS  PubMed  Google Scholar 

  20. Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C (1985) Plasticity of the differentiated state. Science 230:758–766

    Article  CAS  PubMed  Google Scholar 

  21. Otani M, Kogo M, Furukawa S, Wakisaka S, Maeda T (2012) The adiponectin paralog C1q/TNF-related protein 3 (CTRP3) stimulates testosterone production through the cAMP/PKA signaling pathway. Cytokine 58:238–244

    Article  CAS  PubMed  Google Scholar 

  22. Akiyama H, Furukawa S, Wakisaka S, Maeda T (2006) Cartducin stimulates mesenchymal chondroprogenitor cell proliferation through both extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways. FEBS J 273:2257–2263

    Article  CAS  PubMed  Google Scholar 

  23. Akiyama H, Otani M, Sato S, Toyosawa S, Furukawa S, Wakisaka S, Maeda T (2013) A novel adipokine C1q/TNF-related protein 1 (CTRP1) regulates chondrocyte proliferation and maturation through the ERK1/2 signaling pathway. Mol Cell Endocrinol 369:63–71

    Article  CAS  PubMed  Google Scholar 

  24. Braga M, Bhasin S, Jasuja R, Pervin S, Singh R (2012) Testosterone inhibits transforming growth factor-β signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action. Mol Cell Endocrinol 350:39–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Umemoto T, Furutani Y, Murakami M, Matsui T, Funaba M (2011) Endogenous Bmp4 in myoblasts is required for myotube formation in C2C12 cells. Biochim Biophys Acta 1810:1127–1135

    Article  CAS  PubMed  Google Scholar 

  26. Sharples AP, Al-Shanti N, Stewart CE (2010) C2 and C12 murine skeletal myoblast models of atrophic and hypertrophic potential: relevance to disease and ageing? J Cell Physiol 225:240–250

    Article  CAS  PubMed  Google Scholar 

  27. Diel P, Baadners D, Schlupmann K, Velders M, Schwarz JP (2008) C2C12 myoblastoma cell differentiation and proliferation is stimulated by androgens and associated with a modulation of myostatin and Pax7 expression. J Mol Endocrinol 40:231–241

    Article  CAS  PubMed  Google Scholar 

  28. Furutani Y, Murakami M, Funaba M (2009) Differential responses of oxidative stress and calcium influx on expression of the transforming growth factor-β family in myoblasts and myocytes. Cell Biochem Funct 27:578–582

    Article  CAS  PubMed  Google Scholar 

  29. Perry RL, Parker MH, Rudnicki MA (2001) Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol Cell 8:291–301

    Article  CAS  PubMed  Google Scholar 

  30. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  31. Lafyatis R, Lechleider R, Roberts AB, Sporn MB (1991) Secretion and transcriptional regulation of transforming growth factor-β3 during myogenesis. Mol Cell Biol 11:3795–3803

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong W (2012) Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 287:11968–11980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F (2003) The formation of skeletal muscle: from somite to limb. J Anat 202:59–68

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bennett AM, Tonks NK (1997) Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278:1288–1291

    Article  CAS  PubMed  Google Scholar 

  35. Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272:6653–6662

    Article  CAS  PubMed  Google Scholar 

  36. Pena TL, Chen SH, Konieczny SF, Rane SG (2000) Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem 275:13677–13682

    Article  CAS  PubMed  Google Scholar 

  37. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meeks S, Dalton D, Gillett N, Stewart TA (1993) IGF-I is required for normal embryonic growth in mice. Genes Dev 7:2609–2617

    Article  CAS  PubMed  Google Scholar 

  38. Guernec A, Berri C, Chevalier B, Wacrenier-Cere N, Le Bihan-Duval E, Duclos MJ (2003) Muscle development, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increased breast muscle yield. Growth Horm IGF Res 13:8–18

    Article  CAS  PubMed  Google Scholar 

  39. Pelton RW, Saxena B, Jones M, Moses HL, Gold LI (1991) Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (No. 26462836) to T.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Maeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otani, M., Furukawa, S., Wakisaka, S. et al. A novel adipokine C1q/TNF-related protein 3 is expressed in developing skeletal muscle and controls myoblast proliferation and differentiation. Mol Cell Biochem 409, 271–282 (2015). https://doi.org/10.1007/s11010-015-2531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2531-y

Keywords

Navigation