Skip to main content
Log in

Immuno-spin trapping detection of antioxidant/pro-oxidant properties of zinc or selenium on DNA and protein radical formation via hydrogen peroxide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Trace elements can participate in the catalysis of group-transfer reactions and can serve as their structural components. However, most of them including zinc and selenium have multifunctional roles in biological environments such as antioxidant and/or pro-oxidant effects, as concentration-dependent manner. Although it has been demonstrated the antioxidant actions of either selenium or zinc compounds, there are several documents pointing out their pro-oxidant/oxidant roles in biological systems. Here we have used ELISA-based immuno-spin trapping, a method for detection of free radical formation, to detect whether or not a zinc compound, Zn3(PO4)2, or a selenium compound, Na2SeO3, has antioxidant and/or pro-oxidant effect on 5,5-Dimethyl-1-Pyrroline-N-Oxide (DMPO)-DNA nitrone adducts induced with Cu(II)-H2O2-oxidizing system in in vitro preparations. Second, we examined whether this technique is capable to demonstrate the different DMPO-protein nitrone adduct productions in isolated protein crude of hearts from normal rats (CON) or rats with metabolic syndrome (MetS). Our data demonstrated that either Zn2+ (100 µM) or \({\text{SeO}}_{3}^{ - 2}\) (50 nM) has very strong antioxidant action against 200 µM H2O2-induced DMPO-DNA nitrone adduct production, whereas their higher concentrations have apparent pro-oxidant actions. We also used verification by Western blotting analysis whether immuno-spin trapping can be used to assess H2O2-induced DMPO-protein nitrone adducts in heart protein crudes. Our Western blot data further confirmed the ELISA-data from proteins and demonstrated how Zn2+ or \({\text{SeO}}_{3}^{ - 2}\) are dual-functioning ions such as antioxidant at lower concentrations while pro-oxidant at higher concentrations. Particularly, our present data with \({\text{SeO}}_{3}^{ - 2}\) in DMPO-protein nitrone adducts, being in line with our previous observation on its dual-actions in ischemia/reperfusion-induced damaged heart, have shown that this ion has higher pro-oxidant actions over 50 nM in MetS-group compared to that of CON group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Donoso P, Sanchez G, Bull R, Hidalgo C (2011) Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci (Landmark Ed) 16:553–567. doi:10.2741/3705

    Article  CAS  Google Scholar 

  2. Kuster GM, Hauselmann SP, Rosc-Schluter BI, Lorenz V, Pfister O (2010) Reactive oxygen/nitrogen species and the myocardial cell homeostasis: an ambiguous relationship. Antioxid Redox Signal 13(12):1899–1910. doi:10.1089/ars.2010.3464

    Article  CAS  PubMed  Google Scholar 

  3. Shao D, Oka S, Brady CD, Haendeler J, Eaton P, Sadoshima J (2012) Redox modification of cell signaling in the cardiovascular system. J Mol Cell Cardiol 52(3):550–558. doi:10.1016/j.yjmcc.2011.09.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Aviram M (2000) Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radic Res 33(Suppl):S85–S97

    CAS  PubMed  Google Scholar 

  5. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444(7121):875–880. doi:10.1038/nature05487

    Article  PubMed  Google Scholar 

  7. Charles RL, Eaton P (2008) Redox signalling in cardiovascular disease. Proteomics Clin Appl 2(6):823–836. doi:10.1002/prca.200780104

    Article  CAS  PubMed  Google Scholar 

  8. Xu Z, Patel KP, Lou MF, Rozanski GJ (2002) Up-regulation of K(+) channels in diabetic rat ventricular myocytes by insulin and glutathione. Cardiovasc Res 53(1):80–88. doi:10.1016/S0008-6363(01)00446-1

    Article  CAS  PubMed  Google Scholar 

  9. Ayaz M, Ozdemir S, Ugur M, Vassort G, Turan B (2004) Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arch Biochem Biophys 426(1):83–90. doi:10.1016/j.abb.2004.03.030

    Article  CAS  PubMed  Google Scholar 

  10. Ayaz M, Turan B (2006) Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 290(3):H1071–H1080. doi:10.1152/ajpheart.00754.2005

    Article  CAS  PubMed  Google Scholar 

  11. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115(25):3213–3223. doi:10.1161/CIRCULATIONAHA.106.679597

    Article  PubMed  Google Scholar 

  12. Turan B (2010) Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr Pharm Biotechnol 11(8):819–836. doi:10.2174/138920110793262123

    Article  CAS  PubMed  Google Scholar 

  13. Vassort G, Turan B (2010) Protective role of antioxidants in diabetes-induced cardiac dysfunction. Cardiovasc Toxicol 10(2):73–86. doi:10.1007/s12012-010-9064-0

    Article  CAS  PubMed  Google Scholar 

  14. Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-kappaB due to ischemia-reperfusion injury. Antioxid Redox Signal 7(9–10):1388–1397. doi:10.1089/ars.2005.7.1388

    Article  CAS  PubMed  Google Scholar 

  15. Okatan EN, Tuncay E, Turan B (2013) Cardioprotective effect of selenium via modulation of cardiac ryanodine receptor calcium release channels in diabetic rat cardiomyocytes through thioredoxin system. J Nutr Biochem 24(12):2110–2118. doi:10.1016/j.jnutbio.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  16. Koller LD, Exon JH (1986) The two faces of selenium-deficiency and toxicity-are similar in animals and man. Can J Vet Res 50(3):297–306

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Lin-Shiau SY, Liu SH, Fu WM (1989) Studies on the contracture of the mouse diaphragm induced by sodium selenite. Eur J Pharmacol 167(1):137–146. doi:10.1016/0014-2999(89)90755-3

    Article  CAS  PubMed  Google Scholar 

  18. Turan B, Desilets M, Acan LN, Hotomaroglu O, Vannier C, Vassort G (1996) Oxidative effects of selenite on rat ventricular contractility and Ca movements. Cardiovasc Res 32(2):351–361. doi:10.1016/0008-6363(96)00071-5

    Article  CAS  PubMed  Google Scholar 

  19. Ugur M, Ayaz M, Ozdemir S, Turan B (2002) Toxic concentrations of selenite shortens repolarization phase of action potential in rat papillary muscle. Biol Trace Elem Res 89(3):227–238

    Article  CAS  PubMed  Google Scholar 

  20. Ayaz M, Ozdemir S, Yaras N, Vassort G, Turan B (2005) Selenium-induced alterations in ionic currents of rat cardiomyocytes. Biochem Biophys Res Commun 327(1):163–173. doi:10.1016/j.bbrc.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  21. Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17(3):308–314. doi:10.1097/01.ede.0000209454.41466.b7

    Article  PubMed  Google Scholar 

  22. Eide DJ (2011) The oxidative stress of zinc deficiency. Metallomics 3(11):1124–1129. doi:10.1039/c1mt00064k

    Article  CAS  PubMed  Google Scholar 

  23. Rink L, Gabriel P (2000) Zinc and the immune system. Proc Nutr Soc 59(4):541–552. doi:10.1017/S0029665100000781

    Article  CAS  PubMed  Google Scholar 

  24. Song Y, Chung CS, Bruno RS, Traber MG, Brown KH, King JC, Ho E (2009) Dietary zinc restriction and repletion affects DNA integrity in healthy men. Am J Clin Nutr 90(2):321–328. doi:10.3945/ajcn.2008.27300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Vallee BL, Auld DS (1993) New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry 32(26):6493–6500

    Article  CAS  PubMed  Google Scholar 

  26. Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (1990) Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 87(12):4533–4537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214. doi:10.1096/fj.02-0752rev

    Article  CAS  PubMed  Google Scholar 

  28. Ramirez DC, Chen YR, Mason RP (2003) Immunochemical detection of hemoglobin-derived radicals formed by reaction with hydrogen peroxide: involvement of a protein-tyrosyl radical. Free Radic Biol Med 34(7):830–839. doi:10.1016/S0891-5849(02)01437-5

    Article  CAS  PubMed  Google Scholar 

  29. Mason RP (2004) Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radic Biol Med 36(10):1214–1223. doi:10.1016/j.freeradbiomed.2004.02.077

    Article  CAS  PubMed  Google Scholar 

  30. Ramirez DC, Mason RP (2005) Immuno-spin trapping: detection of protein-centered radicals. Curr Protoc Toxicol Chapter 17:Unit 17 17. doi:10.1002/0471140856.tx1707s24

  31. Ramirez DC, Mejiba SE, Mason RP (2006) Immuno-spin trapping of DNA radicals. Nat Methods 3(2):123–127. doi:10.1038/nmeth852

    Article  CAS  PubMed  Google Scholar 

  32. Anzai K, Aikawa T, Furukawa Y, Matsushima Y, Urano S, Ozawa T (2003) ESR measurement of rapid penetration of DMPO and DEPMPO spin traps through lipid bilayer membranes. Arch Biochem Biophys 415(2):251–256. doi:10.1016/S0003-9861(03)00260-1

    Article  CAS  PubMed  Google Scholar 

  33. Gomez-Mejiba SE, Zhai Z, Akram H, Deterding LJ, Hensley K, Smith N, Towner RA, Tomer KB, Mason RP, Ramirez DC (2009) Immuno-spin trapping of protein and DNA radicals: “tagging” free radicals to locate and understand the redox process. Free Radic Biol Med 46(7):853–865. doi:10.1016/j.freeradbiomed.2008.12.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Janzen EG (1984) Spin trapping. Methods Enzymol 105:188–198

    Article  CAS  PubMed  Google Scholar 

  35. Ruiz-Ramirez A, Chavez-Salgado M, Peneda-Flores JA, Zapata E, Masso F, El-Hafidi M (2011) High-sucrose diet increases ROS generation, FFA accumulation, UCP2 level, and proton leak in liver mitochondria. Am J Physiol Endocrinol Metab 301(6):E1198–E1207. doi:10.1152/ajpendo.00631.2010

    Article  CAS  PubMed  Google Scholar 

  36. Ramirez DC, Gomez-Mejiba SE, Mason RP (2007) Immuno-spin trapping analyses of DNA radicals. Nat Protoc 2(3):512–522. doi:10.1038/nprot.2007.5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Haase H, Maret W (2004) A differential assay for the reduced and oxidized states of metallothionein and thionein. Anal Biochem 333(1):19–26. doi:10.1016/j.ab.2004.04.039

    Article  CAS  PubMed  Google Scholar 

  38. Sensi SL, Jeng JM (2004) Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr Mol Med 4(2):87–111

    Article  CAS  PubMed  Google Scholar 

  39. Lengyel I, Fieuw-Makaroff S, Hall AL, Sim AT, Rostas JA, Dunkley PR (2000) Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J Neurochem 75(2):594–605

    Article  CAS  PubMed  Google Scholar 

  40. Brautigan DL, Pinault FM (1991) Activation of membrane protein-tyrosine phosphatase involving cAMP- and Ca2+/phospholipid-dependent protein kinases. Proc Natl Acad Sci USA 88(15):6696–6700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Winegar BD, Lansman JB (1990) Voltage-dependent block by zinc of single calcium channels in mouse myotubes. J Physiol 425:563–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Turan B (2003) Zinc-induced changes in ionic currents of cardiomyocytes. Biol Trace Elem Res 94(1):49–60. doi:10.1385/BTER:94:1:49

    Article  CAS  PubMed  Google Scholar 

  43. Maret W (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 130(5S Suppl):1455S–1458S

    CAS  PubMed  Google Scholar 

  44. Turan B, Fliss H, Desilets M (1997) Oxidants increase intracellular free Zn2 + concentration in rabbit ventricular myocytes. Am J Physiol 272(5 Pt 2):H2095–H2106

    CAS  PubMed  Google Scholar 

  45. Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B (2011) Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res 89(3):634–642. doi:10.1093/cvr/cvq352cvq352

    Article  CAS  PubMed  Google Scholar 

  46. Battell ML, Delgatty HL, McNeill JH (1998) Sodium selenate corrects glucose tolerance and heart function in STZ diabetic rats. Mol Cell Biochem 179(1–2):27–34

    Article  CAS  PubMed  Google Scholar 

  47. Walton FS, Waters SB, Jolley SL, LeCluyse EL, Thomas DJ, Styblo M (2003) Selenium compounds modulate the activity of recombinant rat AsIII-methyltransferase and the methylation of arsenite by rat and human hepatocytes. Chem Res Toxicol 16(3):261–265. doi:10.1021/tx025649r

    Article  CAS  PubMed  Google Scholar 

  48. Ulusu NN, Turan B (2005) Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol Trace Elem Res 103(3):207–216. doi:10.1385/BTER:103:3:207

    Article  CAS  PubMed  Google Scholar 

  49. Muller AS, Most E, Pallauf J (2005) Effects of a supranutritional dose of selenate compared with selenite on insulin sensitivity in type II diabetic dbdb mice. J Anim Physiol Anim Nutr (Berl) 89(3–6):94–104. doi:10.1111/j.1439-0396.2005.00559.x

    Article  CAS  Google Scholar 

  50. Kiermayer C, Michalke B, Schmidt J, Brielmeier M (2007) Effect of selenium on thioredoxin reductase activity in Txnrd1 or Txnrd2 hemizygous mice. Biol Chem 388(10):1091–1097. doi:10.1515/BC.2007.133

    Article  CAS  PubMed  Google Scholar 

  51. Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, Schulz R, Turan B (2010) Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 21(9):827–833. doi:10.1016/j.jnutbio.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  52. Orihuela R, Kojima C, Tokar EJ, Person RJ, Xu Y, Qu W, Waalkes MP (2013) Oxidative DNA damage after acute exposure to arsenite and monomethylarsonous acid in biomethylation-deficient human cells. Toxicol Mech Methods 23(6):389–395. doi:10.3109/15376516.2012.762570

    Article  CAS  PubMed  Google Scholar 

  53. Tuncay E, Okatan EN, Toy A, Turan B (2014) Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxid Med Cell Longev 2014:290381. doi:10.1155/2014/290381

    Article  PubMed Central  PubMed  Google Scholar 

  54. Marra G, Cotroneo P, Pitocco D, Manto A, Di Leo MA, Ruotolo V, Caputo S, Giardina B, Ghirlanda G, Santini SA (2002) Early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes: a case for gender difference. Diabetes Care 25(2):370–375

    Article  PubMed  Google Scholar 

  55. Pizent A, Pavlovic M, Jurasovic J, Dodig S, Pasalic D, Mujagic R (2010) Antioxidants, trace elements and metabolic syndrome in elderly subjects. J Nutr Health Aging 14(10):866–871

    Article  CAS  PubMed  Google Scholar 

  56. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. doi:10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant of TUBITAK (SBAG-113S466) to Belma Turan as well as a collaborative study of Belma Turan and Mustafa Atalay in COST Action TD1304. Vedia Deletioglu was supported with ERASMUS programme between Turkey and Finland. The authors would like to thank Drs. R.P. Mason, M. Ehrenshaft, and F.A. Summers for their very kind technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belma Turan.

Ethics declarations

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deletioglu, V., Tuncay, E., Toy, A. et al. Immuno-spin trapping detection of antioxidant/pro-oxidant properties of zinc or selenium on DNA and protein radical formation via hydrogen peroxide. Mol Cell Biochem 409, 23–31 (2015). https://doi.org/10.1007/s11010-015-2508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2508-x

Keywords

Navigation