Skip to main content

Advertisement

Log in

Effect of ageing and oxidative stress on antioxidant enzyme activity in different regions of the rat kidney

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress has been implicated in ageing and the pathogenesis of chronic kidney disease. We examined levels of antioxidant enzymes glutathione peroxidase, glutathione reductase, glutathione S-transferase, catalase and superoxide dismutase as modulated by age and oxidative stress in different regions of the kidney. Antioxidant enzymes were examined in different regions of the kidney in male Wistar rats. Kidneys from rats of different ages (5, 12, 36 and 60 weeks) were dissected into cortex, outer medulla and inner medulla. Tissues were incubated for 30 min with or without 0.2 mM H2O2 to induce oxidative stress. Antioxidant enzyme activities progressively decreased with age under both control and stress conditions (P < 0.05) after peaking at 12 weeks. Antioxidant enzyme activities were greater in the cortex (P < 0.05) by comparison with the outer and inner medulla, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chandran G, Sirajudeen KNS, Yusoff N, Syamimi N, Swamy M, Samarendra MS (2014) Effect of the antihypertensive drug enalapril on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat. Oxidative Med Cell Longev. doi:10.1155/2014/608512/608512

    Google Scholar 

  2. Semsei I, Rao G, Richardson A (1991) Expression of superoxide dismutase and catalase in rat brain as a function of age. Mech Age Dev 58:13–19

    Article  CAS  Google Scholar 

  3. Sohal R, Sohal BH, Brunk UT (1990) Relationship between antioxidant defenses and longevity in different mammalian species. Mech Age Dev 53:217–227

    Article  CAS  Google Scholar 

  4. Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest 119:2074–2085

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Jones G, Masters C (1976) On the turnover and proteolysis of catalase in tissues of the guinea pig and acatalasemic mice. Arch Biochem Biophys 173:463–471

    Article  CAS  PubMed  Google Scholar 

  6. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    Article  PubMed  Google Scholar 

  7. Pollack M, Leeuwenburgh C (1999) Molecular mechanisms of oxidative stress in aging: free radicals, aging, antioxidants and disease. Handbook of oxidants and antioxidants in exercise. Elsevier Science, Amsterdam, pp 881–923

    Google Scholar 

  8. Lawrence Richard A, Burk Raymond F (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  CAS  PubMed  Google Scholar 

  9. Prohaska JR (1980) The glutathione peroxidase activity of glutathione S-transferases. Biochim Biophys Acta 611:87–98

    Article  CAS  PubMed  Google Scholar 

  10. Bauché F, Fouchard M-H, Jégou B (1994) Antioxidant system in rat testicular cells. FEBS Lett 349:392–396

    Article  PubMed  Google Scholar 

  11. Zhu H, Santo A, Li Y (2012) The antioxidant enzyme peroxiredoxin and its protective role in neurological disorders. Exp Biol Med 237:143–149

    Article  CAS  Google Scholar 

  12. Mirault M, Tremblay A, Beaudoin N, Tremblay M (1991) Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J Biol Chem 266:20752–20760

    CAS  PubMed  Google Scholar 

  13. Raes M, Michiels C, Remacle J (1987) Comparative study of the enzymatic defense systems against oxygen-derived free radicals: the key role of glutathione peroxidase. Free Rad Biol Med 3:3–7

    Article  CAS  PubMed  Google Scholar 

  14. Kolm RH, Danielson U, Zhang Y, Talalay P, Mannervik B (1995) Isothiocyanates as substrates for human glutathione transferases: structure-activity studies. Biochem J 311:453–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Morrow C, Cowan K (1989) Glutathione S-transferases and drug resistance. Cancer cells, vol 2. Cold Spring Harbor, New York, pp 15–22

    Google Scholar 

  16. Lavoie L, Tremblay A, Mirault M (1992) Distinct oxidoresistance phenotype of human T47D cells transfected by rat glutathione S-transferase Yc expression vectors. J Biol Chem 267:3632–3636

    CAS  PubMed  Google Scholar 

  17. Zhang X-L, Zheng C, Guo S, Li J, Yang H, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet–MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434

    Article  CAS  PubMed  Google Scholar 

  18. Baker MA, Taylor YC, Brown JM (1988) Radiosensitization, thiol oxidation, and inhibition of DNA repair by SR 4077. Radiat Res 113:346–355

    Article  CAS  PubMed  Google Scholar 

  19. Miller AC, Blakely WF (1992) Inhibition of glutathione reductase activity by a carbomoylating nitrosourea: effect on cellular radiosensitivity. Free Rad Biol Med 12:53–62

    Article  CAS  PubMed  Google Scholar 

  20. Sharma P, Jha AB, Dubey RS, Pessarakli M. (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037

  21. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zou AP, Cowley A (2003) Reactive oxygen species and molecular regulation of renal oxygenation. Acta Phys Scand 179:233–241

    Article  CAS  Google Scholar 

  23. Makino A, Skelton MM, Zou A-P, Roman RJ, Cowley AW Jr (2002) Increased renal medullary oxidative stress produces hypertension. Hypertension 39(2):667–672

    Article  CAS  PubMed  Google Scholar 

  24. Rao G, Xia E, Richardson A (1990) Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech Age Dev 53:49–60

    Article  CAS  Google Scholar 

  25. Baird M, Samis H (1971) Regulation of catalase activity in mice of different ages. Geront 17:105–115

    Article  CAS  Google Scholar 

  26. Soleimani M, Brookstein C, Bizal GL, Musch MW, Hattabaugh YJ, Rao MC, Chang EB (1994) Localization of the Na+/H+ exchanger isoform NHE-3 in rabbit and canine kidney. Biochim Biophys Acta 1195:89–95

    Article  CAS  PubMed  Google Scholar 

  27. Hazelton GA, Lang CA (1985) Glutathione peroxidase and reductase activities in the aging mouse. Mech Age Dev 29:71–81

    Article  CAS  Google Scholar 

  28. Farahmand SK, Samini F, Samini M, Samarghandian S (2013) Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology 14:63–71

    Article  CAS  PubMed  Google Scholar 

  29. Carney Almroth B, Johnsson J, Devlin R, Sturve J (2012) Oxidative stress in growth hormone transgenic coho salmon with compressed lifespan-a model for addressing aging. Free Radic Res 46:1183–1189

    Article  CAS  PubMed  Google Scholar 

  30. Ramesh T, Kim S-W, Sung J-H, Hwang S-Y, Sohn S-H, Yoo S-K, Kim S-K (2012) Effect of fermented Panax Ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp Gerontol 47:77–84

    Article  CAS  PubMed  Google Scholar 

  31. Ito Y, Kajkenova O, Feuers R, Udupa KB, Desai VG, Epstein J, Hart RW, Lipschitz DA (1998) Impaired glutathione peroxidase activity accounts for the age-related accumulation of hydrogen peroxide in activated human neutrophils. J Gerontol Ser A 53:M169–M175

    Article  CAS  Google Scholar 

  32. Subramanian MV, James T (2010) Age-related protective effect of deprenyl on changes in the levels of diagnostic marker enzymes and antioxidant defense enzymes activities in cerebellar tissue in Wistar rats. Cell Stress Chaperones 15:743–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shih P-H, Yen G-C (2007) Differential expressions of antioxidant status in aging rats: the role of transcriptional factor Nrf2 and MAPK signaling pathway. Biogerontology 8:71–80

    Article  CAS  PubMed  Google Scholar 

  34. Čejková J, Vejražka M, Pláteník J, Štípek S (2004) Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea. Exp Gerontol 39:1537–1543

    Article  PubMed  Google Scholar 

  35. Rao DV, Watson K, Jones GL (1999) Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mech Age Dev 107:105–118

    Article  CAS  Google Scholar 

  36. Visala Rao D, Boyle GM, Parsons PG, Watson K, Jones GL (2003) Influence of ageing, heat shock treatment and in vivo total antioxidant status on gene-expression profile and protein synthesis in human peripheral lymphocytes. Mech Age Dev 124:55–69

    Article  CAS  Google Scholar 

  37. King N, Lin H, Suleiman M-S (2010) Cysteine protects freshly isolated cardiomyocytes against oxidative stress by stimulating glutathione peroxidase. Mol Cell Biochem 343:125–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. King N, McGivan JD, Griffiths EJ, Halestrap AP, Suleiman M-S (2003) Glutamate loading protects freshly isolated and perfused adult cardiomyocytes against intracellular ROS generation. J Mol Cell Cardiol 35:975–984

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Desai K, Juurlink BHJ, de Champlain J, Wu L (2006) Gender-related differences in advanced glycation end products, oxidative stress markers and nitric oxide synthases in rats. Kid Int 69:281–287

    Article  CAS  Google Scholar 

  40. Gecit İ, Kavak S, Meral I, Pirinçci N, Güneş M, Demir H, Cengiz N, Ceylan K (2011) Effects of shock waves on oxidative stress, antioxidant enzyme and element levels in kidney of rats. Biol Trace Elem Res 144:1069–1076

    Article  CAS  PubMed  Google Scholar 

  41. Sheng B, He D, Zhao J, Chen X, Nan X (2011) The protective effects of the traditional Chinese herbs against renal damage induced by extracorporeal shock wave lithotripsy: a clinical study. Urol Res 39:89–97

    Article  PubMed  Google Scholar 

  42. Sindhu RK, Koo J-R, Roberts CK, Vaziri ND (2004) Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: response to insulin and antioxidant therapies. Clin Exp Hypertens 26:43–53

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y-F, Cowley AW Jr, Zou A-P (2003) Increased H2O2 counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla. Am J Physiol 285:R827–R833

    CAS  Google Scholar 

  44. Meng S, Roberts LJ, Cason GW, Curry TS, Manning RD (2002) Superoxide dismutase and oxidative stress in Dahl salt-sensitive and-resistant rats. Am J Physiol 283:R732–R738

    CAS  Google Scholar 

  45. Makino A, Skelton MM, Zou A-P, Cowley AW (2003) Increased renal medullary H2O2 leads to hypertension. Hypertension 42:25–30

    Article  CAS  PubMed  Google Scholar 

  46. Cowley AW (2008) Renal medullary oxidative stress, pressure-natriuresis, and hypertension. Hypertension 52:777–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Pallone TL (2006) Is oxidative stress differentially regulated in the renal cortex and medulla? Nat Clin Prac Nephrol 2:118–119

    Article  CAS  Google Scholar 

  48. Zou A-P, Li N, Cowley AW (2001) Production and actions of superoxide in the renal medulla. Hypertension 37:547–553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was conducted at the University of New England, Australia and supported by a Grant from the School of Science and Technology, University of New England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham L. Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiab, N.R., King, N. & Jones, G.L. Effect of ageing and oxidative stress on antioxidant enzyme activity in different regions of the rat kidney. Mol Cell Biochem 408, 253–260 (2015). https://doi.org/10.1007/s11010-015-2503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2503-2

Keywords

Navigation